MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmval Structured version   Visualization version   GIF version

Theorem dsmmval 20006
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Hypothesis
Ref Expression
dsmmval.b 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
Assertion
Ref Expression
dsmmval (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Distinct variable groups:   𝑆,𝑓,𝑥   𝑅,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem dsmmval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3201 . 2 (𝑅𝑉𝑅 ∈ V)
2 oveq12 6619 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅))
3 eqid 2621 . . . . . . . . 9 (𝑠Xs𝑟) = (𝑠Xs𝑟)
4 vex 3192 . . . . . . . . . 10 𝑠 ∈ V
54a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 ∈ V)
6 vex 3192 . . . . . . . . . 10 𝑟 ∈ V
76a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 ∈ V)
8 eqid 2621 . . . . . . . . 9 (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟))
9 eqidd 2622 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑟)
103, 5, 7, 8, 9prdsbas 16045 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)))
112fveq2d 6157 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅)))
1210, 11eqtr3d 2657 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = (Base‘(𝑆Xs𝑅)))
13 simpr 477 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
1413dmeqd 5291 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
1513fveq1d 6155 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
1615fveq2d 6157 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → (0g‘(𝑟𝑥)) = (0g‘(𝑅𝑥)))
1716neeq2d 2850 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥) ≠ (0g‘(𝑟𝑥)) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
1814, 17rabeqbidv 3184 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
1918eleq1d 2683 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2012, 19rabeqbidv 3184 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
21 dsmmval.b . . . . . 6 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
2220, 21syl6eqr 2673 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = 𝐵)
232, 22oveq12d 6628 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵))
24 df-dsmm 20004 . . . 4 m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
25 ovex 6638 . . . 4 ((𝑆Xs𝑅) ↾s 𝐵) ∈ V
2623, 24, 25ovmpt2a 6751 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
27 reldmdsmm 20005 . . . . . . 7 Rel dom ⊕m
2827ovprc1 6644 . . . . . 6 𝑆 ∈ V → (𝑆m 𝑅) = ∅)
29 ress0 15862 . . . . . 6 (∅ ↾s 𝐵) = ∅
3028, 29syl6eqr 2673 . . . . 5 𝑆 ∈ V → (𝑆m 𝑅) = (∅ ↾s 𝐵))
31 reldmprds 16037 . . . . . . 7 Rel dom Xs
3231ovprc1 6644 . . . . . 6 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
3332oveq1d 6625 . . . . 5 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵))
3430, 33eqtr4d 2658 . . . 4 𝑆 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3534adantr 481 . . 3 ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3626, 35pm2.61ian 830 . 2 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
371, 36syl 17 1 (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  {crab 2911  Vcvv 3189  c0 3896  dom cdm 5079  cfv 5852  (class class class)co 6610  Xcixp 7859  Fincfn 7906  Basecbs 15788  s cress 15789  0gc0g 16028  Xscprds 16034  m cdsmm 20003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-fz 12276  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-ress 15795  df-plusg 15882  df-mulr 15883  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-hom 15894  df-cco 15895  df-prds 16036  df-dsmm 20004
This theorem is referenced by:  dsmmbase  20007  dsmmval2  20008
  Copyright terms: Public domain W3C validator