Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapf1od Structured version   Visualization version   GIF version

Theorem dssmapf1od 40360
Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapfvd.d 𝐷 = (𝑂𝐵)
dssmapfvd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
dssmapf1od (𝜑𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
Distinct variable groups:   𝐵,𝑏,𝑓,𝑠   𝜑,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝑂(𝑓,𝑠,𝑏)   𝑉(𝑓,𝑠,𝑏)

Proof of Theorem dssmapf1od
StepHypRef Expression
1 dssmapfvd.o . . . 4 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
2 dssmapfvd.d . . . 4 𝐷 = (𝑂𝐵)
3 dssmapfvd.b . . . 4 (𝜑𝐵𝑉)
41, 2, 3dssmapfvd 40356 . . 3 (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
53pwexd 5272 . . . . . 6 (𝜑 → 𝒫 𝐵 ∈ V)
65mptexd 6981 . . . . 5 (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) ∈ V)
76ralrimivw 3183 . . . 4 (𝜑 → ∀𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) ∈ V)
8 nfcv 2977 . . . . 5 𝑓(𝒫 𝐵m 𝒫 𝐵)
98fnmptf 6478 . . . 4 (∀𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠)))) ∈ V → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) Fn (𝒫 𝐵m 𝒫 𝐵))
107, 9syl 17 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) Fn (𝒫 𝐵m 𝒫 𝐵))
11 fneq1 6438 . . . 4 (𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) → (𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) ↔ (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) Fn (𝒫 𝐵m 𝒫 𝐵)))
1211biimprd 250 . . 3 (𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) → ((𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))) Fn (𝒫 𝐵m 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵m 𝒫 𝐵)))
134, 10, 12sylc 65 . 2 (𝜑𝐷 Fn (𝒫 𝐵m 𝒫 𝐵))
141, 2, 3dssmapnvod 40359 . 2 (𝜑𝐷 = 𝐷)
15 nvof1o 7031 . 2 ((𝐷 Fn (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐷 = 𝐷) → 𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
1613, 14, 15syl2anc 586 1 (𝜑𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  𝒫 cpw 4538  cmpt 5138  ccnv 5548   Fn wfn 6344  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402
This theorem is referenced by:  dssmap2d  40361  ntrclsf1o  40394  clsneif1o  40447  clsneikex  40449  clsneinex  40450  clsneiel1  40451  neicvgf1o  40457  neicvgmex  40460  neicvgel1  40462  dssmapntrcls  40471  dssmapclsntr  40472
  Copyright terms: Public domain W3C validator