![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvafmulr | Structured version Visualization version GIF version |
Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
dvafmul.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvafmul.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvafmul.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvafmul.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvafmul.f | ⊢ 𝐹 = (Scalar‘𝑈) |
dvafmul.p | ⊢ · = (.r‘𝐹) |
Ref | Expression |
---|---|
dvafmulr | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvafmul.p | . . 3 ⊢ · = (.r‘𝐹) | |
2 | dvafmul.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2651 | . . . . 5 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
4 | dvafmul.u | . . . . 5 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
5 | dvafmul.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑈) | |
6 | 2, 3, 4, 5 | dvasca 36611 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊)) |
7 | 6 | fveq2d 6233 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (.r‘𝐹) = (.r‘((EDRing‘𝐾)‘𝑊))) |
8 | 1, 7 | syl5eq 2697 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (.r‘((EDRing‘𝐾)‘𝑊))) |
9 | dvafmul.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | dvafmul.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
11 | eqid 2651 | . . 3 ⊢ (.r‘((EDRing‘𝐾)‘𝑊)) = (.r‘((EDRing‘𝐾)‘𝑊)) | |
12 | 2, 9, 10, 3, 11 | erngfmul 36410 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (.r‘((EDRing‘𝐾)‘𝑊)) = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))) |
13 | 8, 12 | eqtrd 2685 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∘ ccom 5147 ‘cfv 5926 ↦ cmpt2 6692 .rcmulr 15989 Scalarcsca 15991 LHypclh 35588 LTrncltrn 35705 TEndoctendo 36357 EDRingcedring 36358 DVecAcdveca 36607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-edring 36362 df-dveca 36608 |
This theorem is referenced by: dvamulr 36617 |
Copyright terms: Public domain | W3C validator |