Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafvadd Structured version   Visualization version   GIF version

Theorem dvafvadd 38144
Description: The vector sum operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvafvadd.h 𝐻 = (LHyp‘𝐾)
dvafvadd.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafvadd.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafvadd.v + = (+g𝑈)
Assertion
Ref Expression
dvafvadd ((𝐾𝑋𝑊𝐻) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   + (𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem dvafvadd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dvafvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvafvadd.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 eqid 2821 . . . 4 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 eqid 2821 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvafvadd.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 38135 . . 3 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
76fveq2d 6668 . 2 ((𝐾𝑋𝑊𝐻) → (+g𝑈) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
8 dvafvadd.v . 2 + = (+g𝑈)
92fvexi 6678 . . . 4 𝑇 ∈ V
109, 9mpoex 7771 . . 3 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) ∈ V
11 eqid 2821 . . . 4 ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})
1211lmodplusg 16632 . . 3 ((𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) ∈ V → (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
1310, 12ax-mp 5 . 2 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
147, 8, 133eqtr4g 2881 1 ((𝐾𝑋𝑊𝐻) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  cun 3933  {csn 4560  {ctp 4564  cop 4566  ccom 5553  cfv 6349  cmpo 7152  ndxcnx 16474  Basecbs 16477  +gcplusg 16559  Scalarcsca 16562   ·𝑠 cvsca 16563  LHypclh 37114  LTrncltrn 37231  TEndoctendo 37882  EDRingcedring 37883  DVecAcdveca 38132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-sca 16575  df-vsca 16576  df-dveca 38133
This theorem is referenced by:  dvavadd  38145
  Copyright terms: Public domain W3C validator