Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvafvadd Structured version   Visualization version   GIF version

 Description: The vector sum operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
Assertion
Ref Expression
dvafvadd ((𝐾𝑋𝑊𝐻) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔
Allowed substitution hints:   + (𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑓,𝑔)   𝑋(𝑓,𝑔)

Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dvafvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvafvadd.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 eqid 2760 . . . 4 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 eqid 2760 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvafvadd.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 36795 . . 3 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
76fveq2d 6356 . 2 ((𝐾𝑋𝑊𝐻) → (+g𝑈) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
8 dvafvadd.v . 2 + = (+g𝑈)
9 fvex 6362 . . . . 5 ((LTrn‘𝐾)‘𝑊) ∈ V
102, 9eqeltri 2835 . . . 4 𝑇 ∈ V
1110, 10mpt2ex 7415 . . 3 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) ∈ V
12 eqid 2760 . . . 4 ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})
1312lmodplusg 16221 . . 3 ((𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) ∈ V → (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩})))
1411, 13ax-mp 5 . 2 (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)) = (+g‘({⟨(Base‘ndx), 𝑇⟩, ⟨(+g‘ndx), (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓𝑇 ↦ (𝑠𝑓))⟩}))
157, 8, 143eqtr4g 2819 1 ((𝐾𝑋𝑊𝐻) → + = (𝑓𝑇, 𝑔𝑇 ↦ (𝑓𝑔)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ∪ cun 3713  {csn 4321  {ctp 4325  ⟨cop 4327   ∘ ccom 5270  ‘cfv 6049   ↦ cmpt2 6815  ndxcnx 16056  Basecbs 16059  +gcplusg 16143  Scalarcsca 16146   ·𝑠 cvsca 16147  LHypclh 35773  LTrncltrn 35890  TEndoctendo 36542  EDRingcedring 36543  DVecAcdveca 36792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-plusg 16156  df-sca 16159  df-vsca 16160  df-dveca 36793 This theorem is referenced by:  dvavadd  36805
 Copyright terms: Public domain W3C validator