Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaplusgv Structured version   Visualization version   GIF version

Theorem dvaplusgv 35745
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
dvafplus.h 𝐻 = (LHyp‘𝐾)
dvafplus.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafplus.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvafplus.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafplus.f 𝐹 = (Scalar‘𝑈)
dvafplus.p + = (+g𝐹)
Assertion
Ref Expression
dvaplusgv (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))

Proof of Theorem dvaplusgv
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dvafplus.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvafplus.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvafplus.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvafplus.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
5 dvafplus.f . . . . 5 𝐹 = (Scalar‘𝑈)
6 dvafplus.p . . . . 5 + = (+g𝐹)
71, 2, 3, 4, 5, 6dvaplusg 35744 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸)) → (𝑅 + 𝑆) = (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓))))
87fveq1d 6152 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺))
983adantr3 1220 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺))
10 simpr3 1067 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → 𝐺𝑇)
11 fveq2 6150 . . . . 5 (𝑓 = 𝐺 → (𝑅𝑓) = (𝑅𝐺))
12 fveq2 6150 . . . . 5 (𝑓 = 𝐺 → (𝑆𝑓) = (𝑆𝐺))
1311, 12coeq12d 5251 . . . 4 (𝑓 = 𝐺 → ((𝑅𝑓) ∘ (𝑆𝑓)) = ((𝑅𝐺) ∘ (𝑆𝐺)))
14 eqid 2626 . . . 4 (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓))) = (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))
15 fvex 6160 . . . . 5 (𝑅𝐺) ∈ V
16 fvex 6160 . . . . 5 (𝑆𝐺) ∈ V
1715, 16coex 7068 . . . 4 ((𝑅𝐺) ∘ (𝑆𝐺)) ∈ V
1813, 14, 17fvmpt 6240 . . 3 (𝐺𝑇 → ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
1910, 18syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
209, 19eqtrd 2660 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  cmpt 4678  ccom 5083  cfv 5850  (class class class)co 6605  +gcplusg 15857  Scalarcsca 15860  LHypclh 34717  LTrncltrn 34834  TEndoctendo 35487  DVecAcdveca 35737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-plusg 15870  df-mulr 15871  df-sca 15873  df-vsca 15874  df-edring 35492  df-dveca 35738
This theorem is referenced by:  dvalveclem  35761
  Copyright terms: Public domain W3C validator