Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioo Structured version   Visualization version   GIF version

Theorem dvbdfbdioo 39451
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioo.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioo.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioo.altb (𝜑𝐴 < 𝐵)
dvbdfbdioo.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioo.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioo.dvbd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎)
Assertion
Ref Expression
dvbdfbdioo (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏,𝑥   𝐹,𝑎,𝑏,𝑥   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑏)

Proof of Theorem dvbdfbdioo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioo.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2 dvbdfbdioo.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
32rexrd 10033 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
4 dvbdfbdioo.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
54rexrd 10033 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
62, 4readdcld 10013 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
76rehalfcld 11223 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
8 dvbdfbdioo.altb . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
9 avglt1 11214 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
102, 4, 9syl2anc 692 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
118, 10mpbid 222 . . . . . . . . 9 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
12 avglt2 11215 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
132, 4, 12syl2anc 692 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
148, 13mpbid 222 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
153, 5, 7, 11, 14eliood 39131 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
161, 15ffvelrnd 6316 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
1716recnd 10012 . . . . . 6 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
1817abscld 14109 . . . . 5 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
1918ad2antrr 761 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
20 simplr 791 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ)
214ad2antrr 761 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ)
222ad2antrr 761 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ)
2321, 22resubcld 10402 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵𝐴) ∈ ℝ)
2420, 23remulcld 10014 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵𝐴)) ∈ ℝ)
2519, 24readdcld 10013 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) ∈ ℝ)
268ad2antrr 761 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵)
271ad2antrr 761 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
28 dvbdfbdioo.dmdv . . . . 5 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
2928ad2antrr 761 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
30 fveq2 6148 . . . . . . . . 9 (𝑥 = 𝑦 → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑦))
3130fveq2d 6152 . . . . . . . 8 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
3231breq1d 4623 . . . . . . 7 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎))
3332cbvralv 3159 . . . . . 6 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
3433biimpi 206 . . . . 5 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
3534adantl 482 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)
36 eqid 2621 . . . 4 ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))
3722, 21, 26, 27, 29, 20, 35, 36dvbdfbdioolem2 39450 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))))
38 fveq2 6148 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
3938fveq2d 6152 . . . . . . 7 (𝑥 = 𝑦 → (abs‘(𝐹𝑥)) = (abs‘(𝐹𝑦)))
4039breq1d 4623 . . . . . 6 (𝑥 = 𝑦 → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑦)) ≤ 𝑏))
4140cbvralv 3159 . . . . 5 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑏)
42 breq2 4617 . . . . . 6 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → ((abs‘(𝐹𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4342ralbidv 2980 . . . . 5 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4441, 43syl5bb 272 . . . 4 (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))))
4544rspcev 3295 . . 3 ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
4625, 37, 45syl2anc 692 . 2 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
47 dvbdfbdioo.dvbd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎)
4846, 47r19.29a 3071 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908   class class class wbr 4613  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  cr 9879   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  2c2 11014  (,)cioo 12117  abscabs 13908   D cdv 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537
This theorem is referenced by:  ioodvbdlimc1lem2  39453  ioodvbdlimc2lem  39455
  Copyright terms: Public domain W3C validator