![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvbdfbdioo | Structured version Visualization version GIF version |
Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvbdfbdioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvbdfbdioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvbdfbdioo.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
dvbdfbdioo.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
dvbdfbdioo.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
dvbdfbdioo.dvbd | ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) |
Ref | Expression |
---|---|
dvbdfbdioo | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvbdfbdioo.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
2 | dvbdfbdioo.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | rexrd 10301 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
4 | dvbdfbdioo.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | rexrd 10301 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
6 | 2, 4 | readdcld 10281 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 11491 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ) |
8 | dvbdfbdioo.altb | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 < 𝐵) | |
9 | avglt1 11482 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) | |
10 | 2, 4, 9 | syl2anc 696 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐴 < ((𝐴 + 𝐵) / 2))) |
11 | 8, 10 | mpbid 222 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 < ((𝐴 + 𝐵) / 2)) |
12 | avglt2 11483 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) | |
13 | 2, 4, 12 | syl2anc 696 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵)) |
14 | 8, 13 | mpbid 222 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵) |
15 | 3, 5, 7, 11, 14 | eliood 40241 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
16 | 1, 15 | ffvelrnd 6524 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ) |
17 | 16 | recnd 10280 | . . . . . 6 ⊢ (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
18 | 17 | abscld 14394 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
19 | 18 | ad2antrr 764 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
20 | simplr 809 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝑎 ∈ ℝ) | |
21 | 4 | ad2antrr 764 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐵 ∈ ℝ) |
22 | 2 | ad2antrr 764 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 ∈ ℝ) |
23 | 21, 22 | resubcld 10670 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝐵 − 𝐴) ∈ ℝ) |
24 | 20, 23 | remulcld 10282 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → (𝑎 · (𝐵 − 𝐴)) ∈ ℝ) |
25 | 19, 24 | readdcld 10281 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ) |
26 | 8 | ad2antrr 764 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐴 < 𝐵) |
27 | 1 | ad2antrr 764 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
28 | dvbdfbdioo.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
29 | 28 | ad2antrr 764 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
30 | fveq2 6353 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑦)) | |
31 | 30 | fveq2d 6357 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦))) |
32 | 31 | breq1d 4814 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎)) |
33 | 32 | cbvralv 3310 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
34 | 33 | biimpi 206 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
35 | 34 | adantl 473 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝑎) |
36 | eqid 2760 | . . . 4 ⊢ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) | |
37 | 22, 21, 26, 27, 29, 20, 35, 36 | dvbdfbdioolem2 40665 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) |
38 | fveq2 6353 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
39 | 38 | fveq2d 6357 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘𝑦))) |
40 | 39 | breq1d 4814 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑏)) |
41 | 40 | cbvralv 3310 | . . . . 5 ⊢ (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏) |
42 | breq2 4808 | . . . . . 6 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → ((abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) | |
43 | 42 | ralbidv 3124 | . . . . 5 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
44 | 41, 43 | syl5bb 272 | . . . 4 ⊢ (𝑏 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))))) |
45 | 44 | rspcev 3449 | . . 3 ⊢ ((((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴))) ∈ ℝ ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝑎 · (𝐵 − 𝐴)))) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
46 | 25, 37, 45 | syl2anc 696 | . 2 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
47 | dvbdfbdioo.dvbd | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) | |
48 | 46, 47 | r19.29a 3216 | 1 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 class class class wbr 4804 dom cdm 5266 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ℝcr 10147 + caddc 10151 · cmul 10153 < clt 10286 ≤ cle 10287 − cmin 10478 / cdiv 10896 2c2 11282 (,)cioo 12388 abscabs 14193 D cdv 23846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-fi 8484 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ioo 12392 df-ico 12394 df-icc 12395 df-fz 12540 df-fzo 12680 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-starv 16178 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-hom 16188 df-cco 16189 df-rest 16305 df-topn 16306 df-0g 16324 df-gsum 16325 df-topgen 16326 df-pt 16327 df-prds 16330 df-xrs 16384 df-qtop 16389 df-imas 16390 df-xps 16392 df-mre 16468 df-mrc 16469 df-acs 16471 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-mulg 17762 df-cntz 17970 df-cmn 18415 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-fbas 19965 df-fg 19966 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-lp 21162 df-perf 21163 df-cn 21253 df-cnp 21254 df-haus 21341 df-cmp 21412 df-tx 21587 df-hmeo 21780 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-xms 22346 df-ms 22347 df-tms 22348 df-cncf 22902 df-limc 23849 df-dv 23850 |
This theorem is referenced by: ioodvbdlimc1lem2 40668 ioodvbdlimc2lem 40670 |
Copyright terms: Public domain | W3C validator |