MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnp2 Structured version   Visualization version   GIF version

Theorem dvcnp2 24511
Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvcnp.j 𝐽 = (𝐾t 𝐴)
dvcnp.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcnp2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))

Proof of Theorem dvcnp2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1188 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹:𝐴⟶ℂ)
21ffvelrnda 6845 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3 dvcnp.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
43cnfldtop 23386 . . . . . . . . . . . . 13 𝐾 ∈ Top
5 simpl1 1187 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ⊆ ℂ)
6 cnex 10612 . . . . . . . . . . . . . 14 ℂ ∈ V
7 ssexg 5219 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
85, 6, 7sylancl 588 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 ∈ V)
9 resttop 21762 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
104, 8, 9sylancr 589 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ Top)
11 simpl3 1189 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴𝑆)
123cnfldtopon 23385 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
13 resttopon 21763 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1412, 5, 13sylancr 589 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
15 toponuni 21516 . . . . . . . . . . . . . 14 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
1614, 15syl 17 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑆 = (𝐾t 𝑆))
1711, 16sseqtrd 4006 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 (𝐾t 𝑆))
18 eqid 2821 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
1918ntrss2 21659 . . . . . . . . . . . 12 (((𝐾t 𝑆) ∈ Top ∧ 𝐴 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
2010, 17, 19syl2anc 586 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((int‘(𝐾t 𝑆))‘𝐴) ⊆ 𝐴)
21 eqid 2821 . . . . . . . . . . . . 13 (𝐾t 𝑆) = (𝐾t 𝑆)
22 eqid 2821 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
23 simp1 1132 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝑆 ⊆ ℂ)
24 simp2 1133 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐹:𝐴⟶ℂ)
25 simp3 1134 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → 𝐴𝑆)
2621, 3, 22, 23, 24, 25eldv 24490 . . . . . . . . . . . 12 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦 ↔ (𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴) ∧ 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))))
2726simprbda 501 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ((int‘(𝐾t 𝑆))‘𝐴))
2820, 27sseldd 3967 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵𝐴)
291, 28ffvelrnd 6846 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ℂ)
3029adantr 483 . . . . . . . 8 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (𝐹𝐵) ∈ ℂ)
312, 30subcld 10991 . . . . . . 7 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
32 ssid 3988 . . . . . . . 8 ℂ ⊆ ℂ
3332a1i 11 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ℂ ⊆ ℂ)
34 txtopon 22193 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
3512, 12, 34mp2an 690 . . . . . . . 8 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
3635toponrestid 21523 . . . . . . 7 (𝐾 ×t 𝐾) = ((𝐾 ×t 𝐾) ↾t (ℂ × ℂ))
3711, 5sstrd 3976 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐴 ⊆ ℂ)
381, 37, 28dvlem 24488 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) ∈ ℂ)
3937ssdifssd 4118 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
4039sselda 3966 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ ℂ)
4137, 28sseldd 3967 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐵 ∈ ℂ)
4241adantr 483 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ)
4340, 42subcld 10991 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ∈ ℂ)
4426simplbda 502 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))) lim 𝐵))
45 limcresi 24477 . . . . . . . . . . . 12 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵)
46 difss 4107 . . . . . . . . . . . . . 14 (𝐴 ∖ {𝐵}) ⊆ 𝐴
47 resmpt 5899 . . . . . . . . . . . . . 14 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)))
4846, 47ax-mp 5 . . . . . . . . . . . . 13 ((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵))
4948oveq1i 7160 . . . . . . . . . . . 12 (((𝑧𝐴 ↦ (𝑧𝐵)) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5045, 49sseqtri 4002 . . . . . . . . . . 11 ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵) ⊆ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵)
5141subidd 10979 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) = 0)
523subcn 23468 . . . . . . . . . . . . . . 15 − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
5352a1i 11 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
54 cncfmptid 23514 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
5537, 32, 54sylancl 588 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝑧) ∈ (𝐴cn→ℂ))
56 cncfmptc 23513 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
5741, 37, 33, 56syl3anc 1367 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴𝐵) ∈ (𝐴cn→ℂ))
583, 53, 55, 57cncfmpt2f 23516 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝑧𝐵)) ∈ (𝐴cn→ℂ))
59 oveq1 7157 . . . . . . . . . . . . 13 (𝑧 = 𝐵 → (𝑧𝐵) = (𝐵𝐵))
6058, 28, 59cnmptlimc 24482 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐵𝐵) ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6151, 60eqeltrrd 2914 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ (𝑧𝐵)) lim 𝐵))
6250, 61sseldi 3964 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ (𝑧𝐵)) lim 𝐵))
633mulcn 23469 . . . . . . . . . . 11 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6423, 24, 25dvcl 24491 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
65 0cn 10627 . . . . . . . . . . . 12 0 ∈ ℂ
66 opelxpi 5586 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
6764, 65, 66sylancl 588 . . . . . . . . . . 11 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨𝑦, 0⟩ ∈ (ℂ × ℂ))
6835toponunii 21518 . . . . . . . . . . . 12 (ℂ × ℂ) = (𝐾 ×t 𝐾)
6968cncnpi 21880 . . . . . . . . . . 11 (( · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨𝑦, 0⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7063, 67, 69sylancr 589 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → · ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨𝑦, 0⟩))
7138, 43, 33, 33, 3, 36, 44, 62, 70limccnp2 24484 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵))
7264mul01d 10833 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑦 · 0) = 0)
731adantr 483 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐹:𝐴⟶ℂ)
74 simpr 487 . . . . . . . . . . . . . . 15 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
7546, 74sseldi 3964 . . . . . . . . . . . . . 14 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐴)
7673, 75ffvelrnd 6846 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝑧) ∈ ℂ)
7729adantr 483 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝐹𝐵) ∈ ℂ)
7876, 77subcld 10991 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((𝐹𝑧) − (𝐹𝐵)) ∈ ℂ)
79 eldifsni 4715 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
8079adantl 484 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝑧𝐵)
8140, 42, 80subne0d 11000 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → (𝑧𝐵) ≠ 0)
8278, 43, 81divcan1d 11411 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵)) = ((𝐹𝑧) − (𝐹𝐵)))
8382mpteq2dva 5153 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
8483oveq1d 7165 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)) · (𝑧𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
8571, 72, 843eltr3d 2927 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
8631fmpttd 6873 . . . . . . . . . 10 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))):𝐴⟶ℂ)
8786limcdif 24468 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
88 resmpt 5899 . . . . . . . . . . 11 ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))))
8946, 88ax-mp 5 . . . . . . . . . 10 ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) = (𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵)))
9089oveq1i 7160 . . . . . . . . 9 (((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) ↾ (𝐴 ∖ {𝐵})) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵)
9187, 90syl6eq 2872 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵) = ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
9285, 91eleqtrrd 2916 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 0 ∈ ((𝑧𝐴 ↦ ((𝐹𝑧) − (𝐹𝐵))) lim 𝐵))
93 cncfmptc 23513 . . . . . . . . 9 (((𝐹𝐵) ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
9429, 37, 33, 93syl3anc 1367 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (𝐹𝐵)) ∈ (𝐴cn→ℂ))
95 eqidd 2822 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝐵) = (𝐹𝐵))
9694, 28, 95cnmptlimc 24482 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ ((𝑧𝐴 ↦ (𝐹𝐵)) lim 𝐵))
973addcn 23467 . . . . . . . 8 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
98 opelxpi 5586 . . . . . . . . 9 ((0 ∈ ℂ ∧ (𝐹𝐵) ∈ ℂ) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
9965, 29, 98sylancr 589 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ))
10068cncnpi 21880 . . . . . . . 8 (( + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) ∧ ⟨0, (𝐹𝐵)⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
10197, 99, 100sylancr 589 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → + ∈ (((𝐾 ×t 𝐾) CnP 𝐾)‘⟨0, (𝐹𝐵)⟩))
10231, 30, 33, 33, 3, 36, 92, 96, 101limccnp2 24484 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) ∈ ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵))
10329addid2d 10835 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (0 + (𝐹𝐵)) = (𝐹𝐵))
1042, 30npcand 10995 . . . . . . . . 9 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) ∧ 𝑧𝐴) → (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵)) = (𝐹𝑧))
105104mpteq2dva 5153 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = (𝑧𝐴 ↦ (𝐹𝑧)))
1061feqmptd 6727 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
107105, 106eqtr4d 2859 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) = 𝐹)
108107oveq1d 7165 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → ((𝑧𝐴 ↦ (((𝐹𝑧) − (𝐹𝐵)) + (𝐹𝐵))) lim 𝐵) = (𝐹 lim 𝐵))
109102, 103, 1083eltr3d 2927 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
110 dvcnp.j . . . . . . 7 𝐽 = (𝐾t 𝐴)
1113, 110cnplimc 24479 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
11237, 28, 111syl2anc 586 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
1131, 109, 112mpbir2and 711 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵(𝑆 D 𝐹)𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
114113ex 415 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
115114exlimdv 1930 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → (∃𝑦 𝐵(𝑆 D 𝐹)𝑦𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
116 eldmg 5761 . . 3 (𝐵 ∈ dom (𝑆 D 𝐹) → (𝐵 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐵(𝑆 D 𝐹)𝑦))
117116ibi 269 . 2 (𝐵 ∈ dom (𝑆 D 𝐹) → ∃𝑦 𝐵(𝑆 D 𝐹)𝑦)
118115, 117impel 508 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  wss 3935  {csn 4560  cop 4566   cuni 4831   class class class wbr 5058  cmpt 5138   × cxp 5547  dom cdm 5549  cres 5551  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531   + caddc 10534   · cmul 10536  cmin 10864   / cdiv 11291  t crest 16688  TopOpenctopn 16689  fldccnfld 20539  Topctop 21495  TopOnctopon 21512  intcnt 21619   Cn ccn 21826   CnP ccnp 21827   ×t ctx 22162  cnccncf 23478   lim climc 24454   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-ntr 21622  df-cn 21829  df-cnp 21830  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by:  dvcn  24512  dvmulbr  24530  dvcobr  24537  fouriersw  42510
  Copyright terms: Public domain W3C validator