MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvre Structured version   Visualization version   GIF version

Theorem dvcnvre 24619
Description: The derivative rule for inverse functions. If 𝐹 is a continuous and differentiable bijective function from 𝑋 to 𝑌 which never has derivative 0, then 𝐹 is also differentiable, and its derivative is the reciprocal of the derivative of 𝐹. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
Assertion
Ref Expression
dvcnvre (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem dvcnvre
Dummy variables 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21tgioo2 23414 . 2 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3 reelprrecn 10632 . . 3 ℝ ∈ {ℝ, ℂ}
43a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
5 retop 23373 . . . . 5 (topGen‘ran (,)) ∈ Top
6 dvcnvre.1 . . . . . . 7 (𝜑𝐹:𝑋1-1-onto𝑌)
7 f1ofo 6625 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
8 forn 6596 . . . . . . 7 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
96, 7, 83syl 18 . . . . . 6 (𝜑 → ran 𝐹 = 𝑌)
10 dvcnvre.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋cn→ℝ))
11 cncff 23504 . . . . . . 7 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
12 frn 6523 . . . . . . 7 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
1310, 11, 123syl 18 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
149, 13eqsstrrd 4009 . . . . 5 (𝜑𝑌 ⊆ ℝ)
15 uniretop 23374 . . . . . 6 ℝ = (topGen‘ran (,))
1615ntrss2 21668 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
175, 14, 16sylancr 589 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
18 f1ocnvfv2 7037 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
196, 18sylan 582 . . . . 5 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
20 eqid 2824 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
2120rexmet 23402 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
22 dvcnvre.d . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
23 dvbsss 24503 . . . . . . . . . . . . 13 dom (ℝ D 𝐹) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
2522, 24eqsstrrd 4009 . . . . . . . . . . 11 (𝜑𝑋 ⊆ ℝ)
2615ntrss2 21668 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
275, 25, 26sylancr 589 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
28 ax-resscn 10597 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
3010, 11syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℝ)
31 fss 6530 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
3230, 28, 31sylancl 588 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℂ)
3329, 32, 25, 2, 1dvbssntr 24501 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3422, 33eqsstrrd 4009 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3527, 34eqssd 3987 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋)
3615isopn3 21677 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
375, 25, 36sylancr 589 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
3835, 37mpbird 259 . . . . . . . 8 (𝜑𝑋 ∈ (topGen‘ran (,)))
39 f1ocnv 6630 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
40 f1of 6618 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
416, 39, 403syl 18 . . . . . . . . 9 (𝜑𝐹:𝑌𝑋)
4241ffvelrnda 6854 . . . . . . . 8 ((𝜑𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
43 eqid 2824 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4420, 43tgioo 23407 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4544mopni2 23106 . . . . . . . 8 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑋 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑋) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4621, 38, 42, 45mp3an2ani 1464 . . . . . . 7 ((𝜑𝑥𝑌) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4710ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹 ∈ (𝑋cn→ℝ))
4822ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → dom (ℝ D 𝐹) = 𝑋)
49 dvcnvre.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
5049ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐹))
516ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹:𝑋1-1-onto𝑌)
5242adantr 483 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ 𝑋)
53 rphalfcl 12419 . . . . . . . . 9 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
5453ad2antrl 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ+)
5525ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑋 ⊆ ℝ)
5655, 52sseldd 3971 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ ℝ)
5754rpred 12434 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ)
5856, 57resubcld 11071 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
5956, 57readdcld 10673 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
60 elicc2 12804 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ ∧ ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6158, 59, 60syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6261biimpa 479 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2))))
6362simp1d 1138 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ ℝ)
6456adantr 483 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝐹𝑥) ∈ ℝ)
65 simplrl 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
6665rpred 12434 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ)
6764, 66resubcld 11071 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ)
6858adantr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
6965, 53syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
7069rpred 12434 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ)
71 rphalflt 12421 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
7265, 71syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) < 𝑟)
7370, 66, 64, 72ltsub2dd 11256 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < ((𝐹𝑥) − (𝑟 / 2)))
7462simp2d 1139 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦)
7567, 68, 63, 73, 74ltletrd 10803 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < 𝑦)
7659adantr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
7764, 66readdcld 10673 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ)
7862simp3d 1140 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))
7970, 66, 64, 72ltadd2dd 10802 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) < ((𝐹𝑥) + 𝑟))
8063, 76, 77, 78, 79lelttrd 10801 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 < ((𝐹𝑥) + 𝑟))
8167rexrd 10694 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ*)
8277rexrd 10694 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ*)
83 elioo2 12782 . . . . . . . . . . . . . 14 ((((𝐹𝑥) − 𝑟) ∈ ℝ* ∧ ((𝐹𝑥) + 𝑟) ∈ ℝ*) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8481, 82, 83syl2anc 586 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8563, 75, 80, 84mpbir3and 1338 . . . . . . . . . . . 12 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
8685ex 415 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟))))
8786ssrdv 3976 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
88 rpre 12400 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
8988ad2antrl 726 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑟 ∈ ℝ)
9020bl2ioo 23403 . . . . . . . . . . 11 (((𝐹𝑥) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9156, 89, 90syl2anc 586 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9287, 91sseqtrrd 4011 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟))
93 simprr 771 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
9492, 93sstrd 3980 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ 𝑋)
95 eqid 2824 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
96 eqid 2824 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
97 eqid 2824 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑌) = ((TopOpen‘ℂfld) ↾t 𝑌)
9847, 48, 50, 51, 52, 54, 94, 95, 1, 96, 97dvcnvrelem2 24618 . . . . . . 7 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
9946, 98rexlimddv 3294 . . . . . 6 ((𝜑𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
10099simpld 497 . . . . 5 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10119, 100eqeltrrd 2917 . . . 4 ((𝜑𝑥𝑌) → 𝑥 ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10217, 101eqelssd 3991 . . 3 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌)
10315isopn3 21677 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
1045, 14, 103sylancr 589 . . 3 (𝜑 → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
105102, 104mpbird 259 . 2 (𝜑𝑌 ∈ (topGen‘ran (,)))
10699simprd 498 . . . . . 6 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))))
10719fveq2d 6677 . . . . . 6 ((𝜑𝑥𝑌) → ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))) = ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
108106, 107eleqtrd 2918 . . . . 5 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
109108ralrimiva 3185 . . . 4 (𝜑 → ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
1101cnfldtopon 23394 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
11114, 28sstrdi 3982 . . . . . 6 (𝜑𝑌 ⊆ ℂ)
112 resttopon 21772 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
113110, 111, 112sylancr 589 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
11425, 28sstrdi 3982 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
115 resttopon 21772 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
116110, 114, 115sylancr 589 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
117 cncnp 21891 . . . . 5 ((((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
118113, 116, 117syl2anc 586 . . . 4 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
11941, 109, 118mpbir2and 711 . . 3 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
1201, 97, 96cncfcn 23520 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
121111, 114, 120syl2anc 586 . . 3 (𝜑 → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
122119, 121eleqtrrd 2919 . 2 (𝜑𝐹 ∈ (𝑌cn𝑋))
1231, 2, 4, 105, 6, 122, 22, 49dvcnv 24577 1 (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939  {cpr 4572   class class class wbr 5069  cmpt 5149   × cxp 5556  ccnv 5557  dom cdm 5558  ran crn 5559  cres 5560  ccom 5562  wf 6354  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543  *cxr 10677   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  2c2 11695  +crp 12392  (,)cioo 12741  [,]cicc 12744  abscabs 14596  t crest 16697  TopOpenctopn 16698  topGenctg 16714  ∞Metcxmet 20533  ballcbl 20535  MetOpencmopn 20538  fldccnfld 20548  Topctop 21504  TopOnctopon 21521  intcnt 21628   Cn ccn 21835   CnP ccnp 21836  cnccncf 23487   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvrelog  25223
  Copyright terms: Public domain W3C validator