MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem1 Structured version   Visualization version   GIF version

Theorem dvcnvrelem1 24608
Description: Lemma for dvcnvre 24610. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
Assertion
Ref Expression
dvcnvrelem1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))

Proof of Theorem dvcnvrelem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnvre.d . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
2 dvbsss 24494 . . . . . 6 dom (ℝ D 𝐹) ⊆ ℝ
31, 2eqsstrrdi 4021 . . . . 5 (𝜑𝑋 ⊆ ℝ)
4 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
53, 4sseldd 3967 . . . 4 (𝜑𝐶 ∈ ℝ)
6 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
76rpred 12425 . . . 4 (𝜑𝑅 ∈ ℝ)
85, 7resubcld 11062 . . 3 (𝜑 → (𝐶𝑅) ∈ ℝ)
95, 7readdcld 10664 . . 3 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
105, 6ltsubrpd 12457 . . . . 5 (𝜑 → (𝐶𝑅) < 𝐶)
115, 6ltaddrpd 12458 . . . . 5 (𝜑𝐶 < (𝐶 + 𝑅))
128, 5, 9, 10, 11lttrd 10795 . . . 4 (𝜑 → (𝐶𝑅) < (𝐶 + 𝑅))
138, 9, 12ltled 10782 . . 3 (𝜑 → (𝐶𝑅) ≤ (𝐶 + 𝑅))
14 dvcnvre.s . . . 4 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
15 dvcnvre.f . . . 4 (𝜑𝐹 ∈ (𝑋cn→ℝ))
16 rescncf 23499 . . . 4 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
1714, 15, 16sylc 65 . . 3 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
188, 9, 13, 17evthicc2 24055 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
19 cncff 23495 . . . . . . . . 9 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
2015, 19syl 17 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2120, 4ffvelrnd 6846 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℝ)
2221adantr 483 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ℝ)
238rexrd 10685 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ*)
249rexrd 10685 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ*)
25 lbicc2 12846 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2623, 24, 13, 25syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2726adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
288, 5, 10ltled 10782 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ≤ 𝐶)
295, 9, 11ltled 10782 . . . . . . . . . . . 12 (𝜑𝐶 ≤ (𝐶 + 𝑅))
30 elicc2 12795 . . . . . . . . . . . . 13 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
318, 9, 30syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
325, 28, 29, 31mpbir3and 1338 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3332adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3410adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) < 𝐶)
35 isorel 7073 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3635biimpd 231 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3736exp32 423 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3837com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3927, 33, 34, 38syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
4027fvresd 6684 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) = (𝐹‘(𝐶𝑅)))
4133fvresd 6684 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) = (𝐹𝐶))
4240, 41breq12d 5071 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4339, 42sylibd 241 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4420adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐹:𝑋⟶ℝ)
4544ffund 6512 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → Fun 𝐹)
4614adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
4744fdmd 6517 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → dom 𝐹 = 𝑋)
4846, 47sseqtrrd 4007 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
49 funfvima2 6987 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5045, 48, 49syl2anc 586 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5127, 50mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
52 df-ima 5562 . . . . . . . . . . . . 13 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))
53 simprr 771 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5452, 53syl5eq 2868 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5551, 54eleqtrd 2915 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦))
56 elicc2 12795 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
5756ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
5855, 57mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦))
5958simp2d 1139 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶𝑅)))
60 simprll 777 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ)
6114, 26sseldd 3967 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ 𝑋)
6220, 61ffvelrnd 6846 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶𝑅)) ∈ ℝ)
6362adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ ℝ)
64 lelttr 10725 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6560, 63, 22, 64syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6659, 65mpand 693 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
6743, 66syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
68 ubicc2 12847 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
6923, 24, 13, 68syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7069adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7111adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 < (𝐶 + 𝑅))
72 isorel 7073 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7372biimpd 231 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7473exp32 423 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7574com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7633, 70, 71, 75syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
77 fvex 6677 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ∈ V
78 fvex 6677 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ∈ V
7977, 78brcnv 5747 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶))
8070fvresd 6684 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) = (𝐹‘(𝐶 + 𝑅)))
8180, 41breq12d 5071 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8279, 81syl5bb 285 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8376, 82sylibd 241 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
84 funfvima2 6987 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
8545, 48, 84syl2anc 586 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
8670, 85mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
8786, 54eleqtrd 2915 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦))
88 elicc2 12795 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
8988ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
9087, 89mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦))
9190simp2d 1139 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)))
9214, 69sseldd 3967 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ 𝑋)
9320, 92ffvelrnd 6846 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
9493adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
95 lelttr 10725 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
9660, 94, 22, 95syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
9791, 96mpand 693 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
9883, 97syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
99 ax-resscn 10588 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
10099a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
101 fss 6521 . . . . . . . . . . . . . 14 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
10220, 99, 101sylancl 588 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℂ)
10314, 3sstrd 3976 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
104 eqid 2821 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
105104tgioo2 23405 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
106104, 105dvres 24503 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℝ ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
107100, 102, 3, 103, 106syl22anc 836 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
108 iccntr 23423 . . . . . . . . . . . . . 14 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
1098, 9, 108syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
110109reseq2d 5847 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
111107, 110eqtrd 2856 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
112111dmeqd 5768 . . . . . . . . . 10 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
113 dmres 5869 . . . . . . . . . . 11 dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹))
114 ioossicc 12816 . . . . . . . . . . . . . 14 ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ ((𝐶𝑅)[,](𝐶 + 𝑅))
115114, 14sstrid 3977 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ 𝑋)
116115, 1sseqtrrd 4007 . . . . . . . . . . . 12 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹))
117 df-ss 3951 . . . . . . . . . . . 12 (((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹) ↔ (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
118116, 117sylib 220 . . . . . . . . . . 11 (𝜑 → (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
119113, 118syl5eq 2868 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
120112, 119eqtrd 2856 . . . . . . . . 9 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
121 resss 5872 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) ⊆ (ℝ D 𝐹)
122111, 121eqsstrdi 4020 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹))
123 rnss 5803 . . . . . . . . . . 11 ((ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹) → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
124122, 123syl 17 . . . . . . . . . 10 (𝜑 → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
125 dvcnvre.z . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
126124, 125ssneldd 3969 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
1278, 9, 17, 120, 126dvne0 24602 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
128127adantr 483 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
12967, 98, 128mpjaod 856 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 < (𝐹𝐶))
130 isorel 7073 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
131130biimpd 231 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
132131exp32 423 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
133132com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
13433, 70, 71, 133syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
13541, 80breq12d 5071 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
136134, 135sylibd 241 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
13790simp3d 1140 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)
138 simprlr 778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ)
139 ltletr 10726 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
14022, 94, 138, 139syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
141137, 140mpan2d 692 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) → (𝐹𝐶) < 𝑦))
142136, 141syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
143 isorel 7073 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
144143biimpd 231 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
145144exp32 423 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
146145com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
14727, 33, 34, 146syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
148 fvex 6677 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ∈ V
149148, 77brcnv 5747 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)))
15041, 40breq12d 5071 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
151149, 150syl5bb 285 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
152147, 151sylibd 241 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
15358simp3d 1140 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ≤ 𝑦)
154 ltletr 10726 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
15522, 63, 138, 154syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
156153, 155mpan2d 692 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶𝑅)) → (𝐹𝐶) < 𝑦))
157152, 156syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
158142, 157, 128mpjaod 856 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) < 𝑦)
15960rexrd 10685 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ*)
160138rexrd 10685 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ*)
161 elioo2 12773 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
162159, 160, 161syl2anc 586 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
16322, 129, 158, 162mpbir3and 1338 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ (𝑥(,)𝑦))
16454fveq2d 6668 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)))
165 iccntr 23423 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
166165ad2antrl 726 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
167164, 166eqtrd 2856 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝑥(,)𝑦))
168163, 167eleqtrrd 2916 . . . 4 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
169168expr 459 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
170169rexlimdvva 3294 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
17118, 170mpd 15 1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  cin 3934  wss 3935   class class class wbr 5058  ccnv 5548  dom cdm 5549  ran crn 5550  cres 5551  cima 5552  Fun wfun 6343  wf 6345  1-1-ontowf1o 6348  cfv 6349   Isom wiso 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   + caddc 10534  *cxr 10668   < clt 10669  cle 10670  cmin 10864  +crp 12383  (,)cioo 12732  [,]cicc 12735  TopOpenctopn 16689  topGenctg 16705  fldccnfld 20539  intcnt 21619  cnccncf 23478   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by:  dvcnvrelem2  24609
  Copyright terms: Public domain W3C validator