Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem1 Structured version   Visualization version   GIF version

Theorem dvcnvrelem1 23701
 Description: Lemma for dvcnvre 23703. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
Assertion
Ref Expression
dvcnvrelem1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))

Proof of Theorem dvcnvrelem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnvre.d . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
2 dvbsss 23589 . . . . . 6 dom (ℝ D 𝐹) ⊆ ℝ
31, 2syl6eqssr 3640 . . . . 5 (𝜑𝑋 ⊆ ℝ)
4 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
53, 4sseldd 3588 . . . 4 (𝜑𝐶 ∈ ℝ)
6 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
76rpred 11824 . . . 4 (𝜑𝑅 ∈ ℝ)
85, 7resubcld 10410 . . 3 (𝜑 → (𝐶𝑅) ∈ ℝ)
95, 7readdcld 10021 . . 3 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
105, 6ltsubrpd 11856 . . . . 5 (𝜑 → (𝐶𝑅) < 𝐶)
115, 6ltaddrpd 11857 . . . . 5 (𝜑𝐶 < (𝐶 + 𝑅))
128, 5, 9, 10, 11lttrd 10150 . . . 4 (𝜑 → (𝐶𝑅) < (𝐶 + 𝑅))
138, 9, 12ltled 10137 . . 3 (𝜑 → (𝐶𝑅) ≤ (𝐶 + 𝑅))
14 dvcnvre.s . . . 4 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
15 dvcnvre.f . . . 4 (𝜑𝐹 ∈ (𝑋cn→ℝ))
16 rescncf 22623 . . . 4 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
1714, 15, 16sylc 65 . . 3 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
188, 9, 13, 17evthicc2 23152 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
19 cncff 22619 . . . . . . . . 9 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
2015, 19syl 17 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2120, 4ffvelrnd 6321 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℝ)
2221adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ℝ)
238rexrd 10041 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ*)
249rexrd 10041 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ*)
25 lbicc2 12238 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2623, 24, 13, 25syl3anc 1323 . . . . . . . . . . 11 (𝜑 → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2726adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
288, 5, 10ltled 10137 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ≤ 𝐶)
295, 9, 11ltled 10137 . . . . . . . . . . . 12 (𝜑𝐶 ≤ (𝐶 + 𝑅))
30 elicc2 12188 . . . . . . . . . . . . 13 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
318, 9, 30syl2anc 692 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
325, 28, 29, 31mpbir3and 1243 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3332adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3410adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) < 𝐶)
35 isorel 6536 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3635biimpd 219 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3736exp32 630 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3837com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3927, 33, 34, 38syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
40 fvres 6169 . . . . . . . . . . 11 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) = (𝐹‘(𝐶𝑅)))
4127, 40syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) = (𝐹‘(𝐶𝑅)))
42 fvres 6169 . . . . . . . . . . 11 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) = (𝐹𝐶))
4333, 42syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) = (𝐹𝐶))
4441, 43breq12d 4631 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4539, 44sylibd 229 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4620adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐹:𝑋⟶ℝ)
47 ffun 6010 . . . . . . . . . . . . . . 15 (𝐹:𝑋⟶ℝ → Fun 𝐹)
4846, 47syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → Fun 𝐹)
4914adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
50 fdm 6013 . . . . . . . . . . . . . . . 16 (𝐹:𝑋⟶ℝ → dom 𝐹 = 𝑋)
5146, 50syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → dom 𝐹 = 𝑋)
5249, 51sseqtr4d 3626 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
53 funfvima2 6453 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5448, 52, 53syl2anc 692 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5527, 54mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
56 df-ima 5092 . . . . . . . . . . . . 13 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))
57 simprr 795 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5856, 57syl5eq 2667 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5955, 58eleqtrd 2700 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦))
60 elicc2 12188 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
6160ad2antrl 763 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
6259, 61mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦))
6362simp2d 1072 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶𝑅)))
64 simprll 801 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ)
6514, 26sseldd 3588 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ 𝑋)
6620, 65ffvelrnd 6321 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶𝑅)) ∈ ℝ)
6766adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ ℝ)
68 lelttr 10080 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6964, 67, 22, 68syl3anc 1323 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
7063, 69mpand 710 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
7145, 70syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
72 ubicc2 12239 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7323, 24, 13, 72syl3anc 1323 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7473adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7511adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 < (𝐶 + 𝑅))
76 isorel 6536 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7776biimpd 219 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7877exp32 630 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7978com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
8033, 74, 75, 79syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
81 fvex 6163 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ∈ V
82 fvex 6163 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ∈ V
8381, 82brcnv 5270 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶))
84 fvres 6169 . . . . . . . . . . . 12 ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) = (𝐹‘(𝐶 + 𝑅)))
8574, 84syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) = (𝐹‘(𝐶 + 𝑅)))
8685, 43breq12d 4631 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8783, 86syl5bb 272 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8880, 87sylibd 229 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
89 funfvima2 6453 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9048, 52, 89syl2anc 692 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
9174, 90mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
9291, 58eleqtrd 2700 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦))
93 elicc2 12188 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
9493ad2antrl 763 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
9592, 94mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦))
9695simp2d 1072 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)))
9714, 73sseldd 3588 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ 𝑋)
9820, 97ffvelrnd 6321 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
9998adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
100 lelttr 10080 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
10164, 99, 22, 100syl3anc 1323 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
10296, 101mpand 710 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
10388, 102syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
104 ax-resscn 9945 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
105104a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
106 fss 6018 . . . . . . . . . . . . . 14 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
10720, 104, 106sylancl 693 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℂ)
10814, 3sstrd 3597 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
109 eqid 2621 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
110109tgioo2 22529 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
111109, 110dvres 23598 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℝ ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
112105, 107, 3, 108, 111syl22anc 1324 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
113 iccntr 22547 . . . . . . . . . . . . . 14 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
1148, 9, 113syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
115114reseq2d 5361 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
116112, 115eqtrd 2655 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
117116dmeqd 5291 . . . . . . . . . 10 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
118 dmres 5383 . . . . . . . . . . 11 dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹))
119 ioossicc 12209 . . . . . . . . . . . . . 14 ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ ((𝐶𝑅)[,](𝐶 + 𝑅))
120119, 14syl5ss 3598 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ 𝑋)
121120, 1sseqtr4d 3626 . . . . . . . . . . . 12 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹))
122 df-ss 3573 . . . . . . . . . . . 12 (((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹) ↔ (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
123121, 122sylib 208 . . . . . . . . . . 11 (𝜑 → (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
124118, 123syl5eq 2667 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
125117, 124eqtrd 2655 . . . . . . . . 9 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
126 resss 5386 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) ⊆ (ℝ D 𝐹)
127116, 126syl6eqss 3639 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹))
128 rnss 5319 . . . . . . . . . . 11 ((ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹) → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
129127, 128syl 17 . . . . . . . . . 10 (𝜑 → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
130 dvcnvre.z . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
131129, 130ssneldd 3590 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
1328, 9, 17, 125, 131dvne0 23695 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
133132adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
13471, 103, 133mpjaod 396 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 < (𝐹𝐶))
135 isorel 6536 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
136135biimpd 219 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
137136exp32 630 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
138137com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
13933, 74, 75, 138syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
14043, 85breq12d 4631 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
141139, 140sylibd 229 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
14295simp3d 1073 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)
143 simprlr 802 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ)
144 ltletr 10081 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
14522, 99, 143, 144syl3anc 1323 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
146142, 145mpan2d 709 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) → (𝐹𝐶) < 𝑦))
147141, 146syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
148 isorel 6536 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
149148biimpd 219 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
150149exp32 630 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
151150com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
15227, 33, 34, 151syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
153 fvex 6163 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ∈ V
154153, 81brcnv 5270 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)))
15543, 41breq12d 4631 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
156154, 155syl5bb 272 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
157152, 156sylibd 229 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
15862simp3d 1073 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ≤ 𝑦)
159 ltletr 10081 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
16022, 67, 143, 159syl3anc 1323 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
161158, 160mpan2d 709 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶𝑅)) → (𝐹𝐶) < 𝑦))
162157, 161syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
163147, 162, 133mpjaod 396 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) < 𝑦)
16464rexrd 10041 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ*)
165143rexrd 10041 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ*)
166 elioo2 12166 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
167164, 165, 166syl2anc 692 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
16822, 134, 163, 167mpbir3and 1243 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ (𝑥(,)𝑦))
16958fveq2d 6157 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)))
170 iccntr 22547 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
171170ad2antrl 763 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
172169, 171eqtrd 2655 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝑥(,)𝑦))
173168, 172eleqtrrd 2701 . . . 4 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
174173expr 642 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
175174rexlimdvva 3032 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
17618, 175mpd 15 1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   ∩ cin 3558   ⊆ wss 3559   class class class wbr 4618  ◡ccnv 5078  dom cdm 5079  ran crn 5080   ↾ cres 5081   “ cima 5082  Fun wfun 5846  ⟶wf 5848  –1-1-onto→wf1o 5851  ‘cfv 5852   Isom wiso 5853  (class class class)co 6610  ℂcc 9886  ℝcr 9887  0cc0 9888   + caddc 9891  ℝ*cxr 10025   < clt 10026   ≤ cle 10027   − cmin 10218  ℝ+crp 11784  (,)cioo 12125  [,]cicc 12128  TopOpenctopn 16014  topGenctg 16030  ℂfldccnfld 19678  intcnt 20744  –cn→ccncf 22602   D cdv 23550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-cmp 21113  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554 This theorem is referenced by:  dvcnvrelem2  23702
 Copyright terms: Public domain W3C validator