MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcobr Structured version   Visualization version   GIF version

Theorem dvcobr 23615
Description: The chain rule for derivatives at a point. For the (simpler but more limited) function version, see dvco 23616. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvco.f (𝜑𝐹:𝑋⟶ℂ)
dvco.x (𝜑𝑋𝑆)
dvco.g (𝜑𝐺:𝑌𝑋)
dvco.y (𝜑𝑌𝑇)
dvcobr.s (𝜑𝑆 ⊆ ℂ)
dvcobr.t (𝜑𝑇 ⊆ ℂ)
dvco.k (𝜑𝐾𝑉)
dvco.l (𝜑𝐿𝑉)
dvco.bf (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
dvco.bg (𝜑𝐶(𝑇 D 𝐺)𝐿)
dvco.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcobr (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))

Proof of Theorem dvcobr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvco.bg . . . 4 (𝜑𝐶(𝑇 D 𝐺)𝐿)
2 eqid 2621 . . . . 5 (𝐽t 𝑇) = (𝐽t 𝑇)
3 dvco.j . . . . 5 𝐽 = (TopOpen‘ℂfld)
4 eqid 2621 . . . . 5 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
5 dvcobr.t . . . . 5 (𝜑𝑇 ⊆ ℂ)
6 dvco.g . . . . . 6 (𝜑𝐺:𝑌𝑋)
7 dvco.x . . . . . . 7 (𝜑𝑋𝑆)
8 dvcobr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
97, 8sstrd 3593 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
106, 9fssd 6014 . . . . 5 (𝜑𝐺:𝑌⟶ℂ)
11 dvco.y . . . . 5 (𝜑𝑌𝑇)
122, 3, 4, 5, 10, 11eldv 23568 . . . 4 (𝜑 → (𝐶(𝑇 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
131, 12mpbid 222 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1413simpld 475 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌))
15 dvco.bf . . . . . . 7 (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
16 dvco.f . . . . . . . 8 (𝜑𝐹:𝑋⟶ℂ)
178, 16, 7dvcl 23569 . . . . . . 7 ((𝜑 ∧ (𝐺𝐶)(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1815, 17mpdan 701 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1918ad2antrr 761 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → 𝐾 ∈ ℂ)
2016adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
21 eldifi 3710 . . . . . . . . . 10 (𝑧 ∈ (𝑌 ∖ {𝐶}) → 𝑧𝑌)
22 ffvelrn 6313 . . . . . . . . . 10 ((𝐺:𝑌𝑋𝑧𝑌) → (𝐺𝑧) ∈ 𝑋)
236, 21, 22syl2an 494 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝑧) ∈ 𝑋)
2420, 23ffvelrnd 6316 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
2524adantr 481 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
266adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐺:𝑌𝑋)
275, 10, 11dvbss 23571 . . . . . . . . . . . 12 (𝜑 → dom (𝑇 D 𝐺) ⊆ 𝑌)
28 reldv 23540 . . . . . . . . . . . . 13 Rel (𝑇 D 𝐺)
29 releldm 5318 . . . . . . . . . . . . 13 ((Rel (𝑇 D 𝐺) ∧ 𝐶(𝑇 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑇 D 𝐺))
3028, 1, 29sylancr 694 . . . . . . . . . . . 12 (𝜑𝐶 ∈ dom (𝑇 D 𝐺))
3127, 30sseldd 3584 . . . . . . . . . . 11 (𝜑𝐶𝑌)
3231adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐶𝑌)
3326, 32ffvelrnd 6316 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝐶) ∈ 𝑋)
3420, 33ffvelrnd 6316 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3534adantr 481 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3625, 35subcld 10336 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) ∈ ℂ)
3710ad2antrr 761 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝐺:𝑌⟶ℂ)
3821ad2antlr 762 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝑧𝑌)
3937, 38ffvelrnd 6316 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐺𝑧) ∈ ℂ)
4031ad2antrr 761 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝐶𝑌)
4137, 40ffvelrnd 6316 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐺𝐶) ∈ ℂ)
4239, 41subcld 10336 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
43 simpr 477 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ¬ (𝐺𝑧) = (𝐺𝐶))
4439, 41subeq0ad 10346 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) = 0 ↔ (𝐺𝑧) = (𝐺𝐶)))
4544necon3abid 2826 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) ≠ 0 ↔ ¬ (𝐺𝑧) = (𝐺𝐶)))
4643, 45mpbird 247 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) ≠ 0)
4736, 42, 46divcld 10745 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) ∈ ℂ)
4819, 47ifclda 4092 . . . 4 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) ∈ ℂ)
4911, 5sstrd 3593 . . . . 5 (𝜑𝑌 ⊆ ℂ)
5010, 49, 31dvlem 23566 . . . 4 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
51 ssid 3603 . . . . 5 ℂ ⊆ ℂ
5251a1i 11 . . . 4 (𝜑 → ℂ ⊆ ℂ)
533cnfldtopon 22496 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
54 txtopon 21304 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
5553, 53, 54mp2an 707 . . . . . 6 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
5655toponunii 20647 . . . . . . 7 (ℂ × ℂ) = (𝐽 ×t 𝐽)
5756restid 16015 . . . . . 6 ((𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)) → ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ)) = (𝐽 ×t 𝐽))
5855, 57ax-mp 5 . . . . 5 ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ)) = (𝐽 ×t 𝐽)
5958eqcomi 2630 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
6023anim1i 591 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) ≠ (𝐺𝐶)) → ((𝐺𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ≠ (𝐺𝐶)))
61 eldifsn 4287 . . . . . . 7 ((𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}) ↔ ((𝐺𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ≠ (𝐺𝐶)))
6260, 61sylibr 224 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) ≠ (𝐺𝐶)) → (𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}))
6362anasss 678 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ (𝐺𝑧) ≠ (𝐺𝐶))) → (𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}))
64 eldifsni 4289 . . . . . . . 8 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) → 𝑦 ≠ (𝐺𝐶))
65 ifnefalse 4070 . . . . . . . 8 (𝑦 ≠ (𝐺𝐶) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
6664, 65syl 17 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
6766adantl 482 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
686, 31ffvelrnd 6316 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ 𝑋)
6916, 9, 68dvlem 23566 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) ∈ ℂ)
7067, 69eqeltrd 2698 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) ∈ ℂ)
71 limcresi 23555 . . . . . . 7 (𝐺 lim 𝐶) ⊆ ((𝐺 ↾ (𝑌 ∖ {𝐶})) lim 𝐶)
726feqmptd 6206 . . . . . . . . . 10 (𝜑𝐺 = (𝑧𝑌 ↦ (𝐺𝑧)))
7372reseq1d 5355 . . . . . . . . 9 (𝜑 → (𝐺 ↾ (𝑌 ∖ {𝐶})) = ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})))
74 difss 3715 . . . . . . . . . 10 (𝑌 ∖ {𝐶}) ⊆ 𝑌
75 resmpt 5408 . . . . . . . . . 10 ((𝑌 ∖ {𝐶}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)))
7674, 75ax-mp 5 . . . . . . . . 9 ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧))
7773, 76syl6eq 2671 . . . . . . . 8 (𝜑 → (𝐺 ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)))
7877oveq1d 6619 . . . . . . 7 (𝜑 → ((𝐺 ↾ (𝑌 ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
7971, 78syl5sseq 3632 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) ⊆ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
80 eqid 2621 . . . . . . . . . 10 (𝐽t 𝑌) = (𝐽t 𝑌)
8180, 3dvcnp2 23589 . . . . . . . . 9 (((𝑇 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌𝑇) ∧ 𝐶 ∈ dom (𝑇 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
825, 10, 11, 30, 81syl31anc 1326 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
833, 80cnplimc 23557 . . . . . . . . 9 ((𝑌 ⊆ ℂ ∧ 𝐶𝑌) → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
8449, 31, 83syl2anc 692 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
8582, 84mpbid 222 . . . . . . 7 (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
8685simprd 479 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
8779, 86sseldd 3584 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
88 eqid 2621 . . . . . . . . 9 (𝐽t 𝑆) = (𝐽t 𝑆)
89 eqid 2621 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
9088, 3, 89, 8, 16, 7eldv 23568 . . . . . . . 8 (𝜑 → ((𝐺𝐶)(𝑆 D 𝐹)𝐾 ↔ ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))))
9115, 90mpbid 222 . . . . . . 7 (𝜑 → ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))))
9291simprd 479 . . . . . 6 (𝜑𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))
9366mpteq2ia 4700 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) = (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
9493oveq1i 6614 . . . . . 6 ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) lim (𝐺𝐶)) = ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))
9592, 94syl6eleqr 2709 . . . . 5 (𝜑𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) lim (𝐺𝐶)))
96 eqeq1 2625 . . . . . 6 (𝑦 = (𝐺𝑧) → (𝑦 = (𝐺𝐶) ↔ (𝐺𝑧) = (𝐺𝐶)))
97 fveq2 6148 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝐹𝑦) = (𝐹‘(𝐺𝑧)))
9897oveq1d 6619 . . . . . . 7 (𝑦 = (𝐺𝑧) → ((𝐹𝑦) − (𝐹‘(𝐺𝐶))) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
99 oveq1 6611 . . . . . . 7 (𝑦 = (𝐺𝑧) → (𝑦 − (𝐺𝐶)) = ((𝐺𝑧) − (𝐺𝐶)))
10098, 99oveq12d 6622 . . . . . 6 (𝑦 = (𝐺𝑧) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))
10196, 100ifbieq2d 4083 . . . . 5 (𝑦 = (𝐺𝑧) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))))
102 iftrue 4064 . . . . . 6 ((𝐺𝑧) = (𝐺𝐶) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) = 𝐾)
103102ad2antll 764 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ (𝐺𝑧) = (𝐺𝐶))) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) = 𝐾)
10463, 70, 87, 95, 101, 103limcco 23563 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))) lim 𝐶))
10513simprd 479 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
1063mulcn 22578 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1075, 10, 11dvcl 23569 . . . . . . 7 ((𝜑𝐶(𝑇 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
1081, 107mpdan 701 . . . . . 6 (𝜑𝐿 ∈ ℂ)
109 opelxpi 5108 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
11018, 108, 109syl2anc 692 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
11156cncnpi 20992 . . . . 5 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
112106, 110, 111sylancr 694 . . . 4 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
11348, 50, 52, 52, 3, 59, 104, 105, 112limccnp2 23562 . . 3 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
114 oveq1 6611 . . . . . . . 8 (𝐾 = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
115114eqeq1d 2623 . . . . . . 7 (𝐾 = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → ((𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) ↔ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶))))
116 oveq1 6611 . . . . . . . 8 ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
117116eqeq1d 2623 . . . . . . 7 ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → (((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) ↔ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶))))
11819mul01d 10179 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · 0) = 0)
1199adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑋 ⊆ ℂ)
120119, 23sseldd 3584 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
121119, 33sseldd 3584 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
122120, 121subeq0ad 10346 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) = 0 ↔ (𝐺𝑧) = (𝐺𝐶)))
123122biimpar 502 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) = 0)
124123oveq1d 6619 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (0 / (𝑧𝐶)))
12549adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑌 ⊆ ℂ)
12621adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧𝑌)
127125, 126sseldd 3584 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧 ∈ ℂ)
128125, 32sseldd 3584 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐶 ∈ ℂ)
129127, 128subcld 10336 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
130 eldifsni 4289 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑌 ∖ {𝐶}) → 𝑧𝐶)
131130adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧𝐶)
132127, 128, 131subne0d 10345 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
133129, 132div0d 10744 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (0 / (𝑧𝐶)) = 0)
134133adantr 481 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (0 / (𝑧𝐶)) = 0)
135124, 134eqtrd 2655 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = 0)
136135oveq2d 6620 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝐾 · 0))
137 fveq2 6148 . . . . . . . . . . . 12 ((𝐺𝑧) = (𝐺𝐶) → (𝐹‘(𝐺𝑧)) = (𝐹‘(𝐺𝐶)))
13824, 34subeq0ad 10346 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0 ↔ (𝐹‘(𝐺𝑧)) = (𝐹‘(𝐺𝐶))))
139137, 138syl5ibr 236 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐺𝑧) = (𝐺𝐶) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0))
140139imp 445 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0)
141140oveq1d 6619 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) = (0 / (𝑧𝐶)))
142141, 134eqtrd 2655 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) = 0)
143118, 136, 1423eqtr4d 2665 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
144129adantr 481 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝑧𝐶) ∈ ℂ)
145132adantr 481 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝑧𝐶) ≠ 0)
14636, 42, 144, 46, 145dmdcan2d 10775 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
147115, 117, 143, 146ifbothda 4095 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
148 fvco3 6232 . . . . . . . . 9 ((𝐺:𝑌𝑋𝑧𝑌) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
1496, 21, 148syl2an 494 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
150 fvco3 6232 . . . . . . . . . 10 ((𝐺:𝑌𝑋𝐶𝑌) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
1516, 31, 150syl2anc 692 . . . . . . . . 9 (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
152151adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
153149, 152oveq12d 6622 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
154153oveq1d 6619 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
155147, 154eqtr4d 2658 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
156155mpteq2dva 4704 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))))
157156oveq1d 6619 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
158113, 157eleqtrd 2700 . 2 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
159 eqid 2621 . . 3 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
160 fco 6015 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌𝑋) → (𝐹𝐺):𝑌⟶ℂ)
16116, 6, 160syl2anc 692 . . 3 (𝜑 → (𝐹𝐺):𝑌⟶ℂ)
1622, 3, 159, 5, 161, 11eldv 23568 . 2 (𝜑 → (𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
16314, 158, 162mpbir2and 956 1 (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3552  wss 3555  ifcif 4058  {csn 4148  cop 4154   class class class wbr 4613  cmpt 4673   × cxp 5072  dom cdm 5074  cres 5076  ccom 5078  Rel wrel 5079  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880   · cmul 9885  cmin 10210   / cdiv 10628  t crest 16002  TopOpenctopn 16003  fldccnfld 19665  TopOnctopon 20618  intcnt 20731   Cn ccn 20938   CnP ccnp 20939   ×t ctx 21273   lim climc 23532   D cdv 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-ntr 20734  df-cn 20941  df-cnp 20942  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537
This theorem is referenced by:  dvco  23616  dvcof  23617  dvef  23647
  Copyright terms: Public domain W3C validator