Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvcosre Structured version   Visualization version   GIF version

Theorem dvcosre 39457
Description: The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
dvcosre (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))

Proof of Theorem dvcosre
StepHypRef Expression
1 reelprrecn 9980 . . 3 ℝ ∈ {ℝ, ℂ}
2 cosf 14791 . . 3 cos:ℂ⟶ℂ
3 ssid 3608 . . 3 ℂ ⊆ ℂ
4 nfcv 2761 . . . . . 6 𝑥
5 nfrab1 3114 . . . . . 6 𝑥{𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}
64, 5dfss2f 3578 . . . . 5 (ℝ ⊆ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} ↔ ∀𝑥(𝑥 ∈ ℝ → 𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}))
7 recn 9978 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87sincld 14796 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
98negcld 10331 . . . . . . 7 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
10 elex 3201 . . . . . . 7 (-(sin‘𝑥) ∈ ℂ → -(sin‘𝑥) ∈ V)
119, 10syl 17 . . . . . 6 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ V)
12 rabid 3109 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V} ↔ (𝑥 ∈ ℂ ∧ -(sin‘𝑥) ∈ V))
137, 11, 12sylanbrc 697 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V})
146, 13mpgbir 1723 . . . 4 ℝ ⊆ {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}
15 dvcos 23667 . . . . 5 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
1615dmmpt 5594 . . . 4 dom (ℂ D cos) = {𝑥 ∈ ℂ ∣ -(sin‘𝑥) ∈ V}
1714, 16sseqtr4i 3622 . . 3 ℝ ⊆ dom (ℂ D cos)
18 dvres3 23600 . . 3 (((ℝ ∈ {ℝ, ℂ} ∧ cos:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D cos))) → (ℝ D (cos ↾ ℝ)) = ((ℂ D cos) ↾ ℝ))
191, 2, 3, 17, 18mp4an 708 . 2 (ℝ D (cos ↾ ℝ)) = ((ℂ D cos) ↾ ℝ)
20 ffn 6007 . . . . . . 7 (cos:ℂ⟶ℂ → cos Fn ℂ)
212, 20ax-mp 5 . . . . . 6 cos Fn ℂ
22 dffn5 6203 . . . . . 6 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
2321, 22mpbi 220 . . . . 5 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
2423reseq1i 5357 . . . 4 (cos ↾ ℝ) = ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ)
25 ax-resscn 9945 . . . . 5 ℝ ⊆ ℂ
26 resmpt 5413 . . . . 5 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥)))
2725, 26ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))
2824, 27eqtri 2643 . . 3 (cos ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))
2928oveq2i 6621 . 2 (ℝ D (cos ↾ ℝ)) = (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥)))
3015reseq1i 5357 . . 3 ((ℂ D cos) ↾ ℝ) = ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ)
31 resmpt 5413 . . . 4 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
3225, 31ax-mp 5 . . 3 ((𝑥 ∈ ℂ ↦ -(sin‘𝑥)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3330, 32eqtri 2643 . 2 ((ℂ D cos) ↾ ℝ) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3419, 29, 333eqtr3i 2651 1 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3189  wss 3559  {cpr 4155  cmpt 4678  dom cdm 5079  cres 5081   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  -cneg 10219  sincsin 14730  cosccos 14731   D cdv 23550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554
This theorem is referenced by:  itgsin0pilem1  39498  itgsinexplem1  39502  fourierdlem39  39696
  Copyright terms: Public domain W3C validator