Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivbd Structured version   Visualization version   GIF version

Theorem dvdivbd 42215
Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivbd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivbd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvdivbd.adv (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
dvdivbd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvdivbd.b ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
dvdivbd.u (𝜑𝑈 ∈ ℝ)
dvdivbd.r (𝜑𝑅 ∈ ℝ)
dvdivbd.t (𝜑𝑇 ∈ ℝ)
dvdivbd.q (𝜑𝑄 ∈ ℝ)
dvdivbd.cbd ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
dvdivbd.bbd ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
dvdivbd.dbd ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
dvdivbd.abd ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
dvdivbd.bdv (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
dvdivbd.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvdivbd.e (𝜑𝐸 ∈ ℝ+)
dvdivbd.ele (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
dvdivbd.f 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
Assertion
Ref Expression
dvdivbd (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐸,𝑏,𝑥   𝐹,𝑏   𝑄,𝑏,𝑥   𝑅,𝑏,𝑥   𝑥,𝑆   𝑇,𝑏,𝑥   𝑈,𝑏,𝑥   𝑋,𝑏,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑥,𝑏)   𝐵(𝑥,𝑏)   𝐶(𝑥,𝑏)   𝐷(𝑥,𝑏)   𝑆(𝑏)   𝐹(𝑥)

Proof of Theorem dvdivbd
StepHypRef Expression
1 dvdivbd.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 dvdivbd.r . . . . 5 (𝜑𝑅 ∈ ℝ)
31, 2remulcld 10673 . . . 4 (𝜑 → (𝑈 · 𝑅) ∈ ℝ)
4 dvdivbd.t . . . . 5 (𝜑𝑇 ∈ ℝ)
5 dvdivbd.q . . . . 5 (𝜑𝑄 ∈ ℝ)
64, 5remulcld 10673 . . . 4 (𝜑 → (𝑇 · 𝑄) ∈ ℝ)
73, 6readdcld 10672 . . 3 (𝜑 → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
8 dvdivbd.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
98rpred 12434 . . . 4 (𝜑𝐸 ∈ ℝ)
109resqcld 13614 . . 3 (𝜑 → (𝐸↑2) ∈ ℝ)
118rpcnd 12436 . . . 4 (𝜑𝐸 ∈ ℂ)
128rpgt0d 12437 . . . . 5 (𝜑 → 0 < 𝐸)
1312gt0ne0d 11206 . . . 4 (𝜑𝐸 ≠ 0)
14 2z 12017 . . . . 5 2 ∈ ℤ
1514a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
1611, 13, 15expne0d 13519 . . 3 (𝜑 → (𝐸↑2) ≠ 0)
177, 10, 16redivcld 11470 . 2 (𝜑 → (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ)
18 dvdivbd.f . . . . . . 7 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
19 dvdivbd.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
20 dvdivbd.a . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
21 dvdivbd.c . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
22 dvdivbd.adv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
23 dvdivbd.b . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
24 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → 𝐵 = 0)
2524abs00bd 14653 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
26 0red 10646 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
279adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ)
2823abscld 14798 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (abs‘𝐵) ∈ ℝ)
2912adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 < 𝐸)
30 dvdivbd.ele . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
3130r19.21bi 3210 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ≤ (abs‘𝐵))
3226, 27, 28, 29, 31ltletrd 10802 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 0 < (abs‘𝐵))
3332gt0ne0d 11206 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (abs‘𝐵) ≠ 0)
3433adantr 483 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) ≠ 0)
3534neneqd 3023 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → ¬ (abs‘𝐵) = 0)
3625, 35pm2.65da 815 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ¬ 𝐵 = 0)
3736neqned 3025 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
38 eldifsn 4721 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3923, 37, 38sylanbrc 585 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
40 dvdivbd.d . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
41 dvdivbd.bdv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
4219, 20, 21, 22, 39, 40, 41dvmptdiv 24573 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4318, 42syl5eq 2870 . . . . . 6 (𝜑𝐹 = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4421, 23mulcld 10663 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶 · 𝐵) ∈ ℂ)
4540, 20mulcld 10663 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
4644, 45subcld 10999 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶 · 𝐵) − (𝐷 · 𝐴)) ∈ ℂ)
4723sqcld 13511 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ∈ ℂ)
48 sqne0 13492 . . . . . . . . 9 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
4923, 48syl 17 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
5037, 49mpbird 259 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ≠ 0)
5146, 47, 50divcld 11418 . . . . . 6 ((𝜑𝑥𝑋) → (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)) ∈ ℂ)
5243, 51fvmpt2d 6783 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)))
5352fveq2d 6676 . . . 4 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) = (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
5446, 47, 50absdivd 14817 . . . . 5 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) = ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))))
5546abscld 14798 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ∈ ℝ)
567adantr 483 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
578adantr 483 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ+)
5814a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → 2 ∈ ℤ)
5957, 58rpexpcld 13611 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ∈ ℝ+)
6047abscld 14798 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) ∈ ℝ)
6146absge0d 14806 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))))
6244abscld 14798 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
6345abscld 14798 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ∈ ℝ)
6462, 63readdcld 10672 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ∈ ℝ)
6544, 45abs2dif2d 14820 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))))
663adantr 483 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑈 · 𝑅) ∈ ℝ)
676adantr 483 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑇 · 𝑄) ∈ ℝ)
6821, 23absmuld 14816 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
6921abscld 14798 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ∈ ℝ)
701adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑈 ∈ ℝ)
712adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑅 ∈ ℝ)
7221absge0d 14806 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐶))
7323absge0d 14806 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐵))
74 dvdivbd.cbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
75 dvdivbd.bbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
7669, 70, 28, 71, 72, 73, 74, 75lemul12ad 11584 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐶) · (abs‘𝐵)) ≤ (𝑈 · 𝑅))
7768, 76eqbrtrd 5090 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ≤ (𝑈 · 𝑅))
7840, 20absmuld 14816 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) = ((abs‘𝐷) · (abs‘𝐴)))
7940abscld 14798 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ∈ ℝ)
804adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑇 ∈ ℝ)
8120abscld 14798 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
825adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑄 ∈ ℝ)
8340absge0d 14806 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐷))
8420absge0d 14806 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐴))
85 dvdivbd.dbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
86 dvdivbd.abd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
8779, 80, 81, 82, 83, 84, 85, 86lemul12ad 11584 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐷) · (abs‘𝐴)) ≤ (𝑇 · 𝑄))
8878, 87eqbrtrd 5090 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ≤ (𝑇 · 𝑄))
8962, 63, 66, 67, 77, 88le2addd 11261 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
9055, 64, 56, 65, 89letrd 10799 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
91 2nn0 11917 . . . . . . . . 9 2 ∈ ℕ0
9291a1i 11 . . . . . . . 8 ((𝜑𝑥𝑋) → 2 ∈ ℕ0)
9326, 27, 29ltled 10790 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 ≤ 𝐸)
94 leexp1a 13542 . . . . . . . 8 (((𝐸 ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 𝐸𝐸 ≤ (abs‘𝐵))) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9527, 28, 92, 93, 31, 94syl32anc 1374 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9623, 92absexpd 14814 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2))
9795, 96breqtrrd 5096 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ (abs‘(𝐵↑2)))
9855, 56, 59, 60, 61, 90, 97lediv12ad 12493 . . . . 5 ((𝜑𝑥𝑋) → ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
9954, 98eqbrtrd 5090 . . . 4 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
10053, 99eqbrtrd 5090 . . 3 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
101100ralrimiva 3184 . 2 (𝜑 → ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
102 brralrspcev 5128 . 2 (((((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ ∧ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2))) → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
10317, 101, 102syl2anc 586 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  cdif 3935  {csn 4569  {cpr 4571   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  0cn0 11900  cz 11984  +crp 12392  cexp 13432  abscabs 14595   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-t1 21924  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  fourierdlem68  42466
  Copyright terms: Public domain W3C validator