Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivbd Structured version   Visualization version   GIF version

Theorem dvdivbd 39466
Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivbd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivbd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvdivbd.adv (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
dvdivbd.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvdivbd.b ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
dvdivbd.u (𝜑𝑈 ∈ ℝ)
dvdivbd.r (𝜑𝑅 ∈ ℝ)
dvdivbd.t (𝜑𝑇 ∈ ℝ)
dvdivbd.q (𝜑𝑄 ∈ ℝ)
dvdivbd.cbd ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
dvdivbd.bbd ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
dvdivbd.dbd ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
dvdivbd.abd ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
dvdivbd.bdv (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
dvdivbd.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvdivbd.e (𝜑𝐸 ∈ ℝ+)
dvdivbd.ele (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
dvdivbd.f 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
Assertion
Ref Expression
dvdivbd (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Distinct variable groups:   𝐸,𝑏,𝑥   𝐹,𝑏   𝑄,𝑏,𝑥   𝑅,𝑏,𝑥   𝑥,𝑆   𝑇,𝑏,𝑥   𝑈,𝑏,𝑥   𝑋,𝑏,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑥,𝑏)   𝐵(𝑥,𝑏)   𝐶(𝑥,𝑏)   𝐷(𝑥,𝑏)   𝑆(𝑏)   𝐹(𝑥)

Proof of Theorem dvdivbd
StepHypRef Expression
1 dvdivbd.u . . . . 5 (𝜑𝑈 ∈ ℝ)
2 dvdivbd.r . . . . 5 (𝜑𝑅 ∈ ℝ)
31, 2remulcld 10021 . . . 4 (𝜑 → (𝑈 · 𝑅) ∈ ℝ)
4 dvdivbd.t . . . . 5 (𝜑𝑇 ∈ ℝ)
5 dvdivbd.q . . . . 5 (𝜑𝑄 ∈ ℝ)
64, 5remulcld 10021 . . . 4 (𝜑 → (𝑇 · 𝑄) ∈ ℝ)
73, 6readdcld 10020 . . 3 (𝜑 → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
8 dvdivbd.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
98rpred 11823 . . . 4 (𝜑𝐸 ∈ ℝ)
109resqcld 12982 . . 3 (𝜑 → (𝐸↑2) ∈ ℝ)
118rpcnd 11825 . . . 4 (𝜑𝐸 ∈ ℂ)
128rpgt0d 11826 . . . . 5 (𝜑 → 0 < 𝐸)
1312gt0ne0d 10543 . . . 4 (𝜑𝐸 ≠ 0)
14 2z 11360 . . . . 5 2 ∈ ℤ
1514a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
1611, 13, 15expne0d 12961 . . 3 (𝜑 → (𝐸↑2) ≠ 0)
177, 10, 16redivcld 10804 . 2 (𝜑 → (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ)
18 dvdivbd.f . . . . . . 7 𝐹 = (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵)))
19 dvdivbd.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
20 dvdivbd.a . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
21 dvdivbd.c . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
22 dvdivbd.adv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
23 dvdivbd.b . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
24 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → 𝐵 = 0)
2524abs00bd 13972 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
26 0red 9992 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
279adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ)
2823abscld 14116 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (abs‘𝐵) ∈ ℝ)
2912adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 0 < 𝐸)
30 dvdivbd.ele . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝑋 𝐸 ≤ (abs‘𝐵))
3130r19.21bi 2927 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝐸 ≤ (abs‘𝐵))
3226, 27, 28, 29, 31ltletrd 10148 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 0 < (abs‘𝐵))
3332gt0ne0d 10543 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (abs‘𝐵) ≠ 0)
3433adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → (abs‘𝐵) ≠ 0)
3534neneqd 2795 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝐵 = 0) → ¬ (abs‘𝐵) = 0)
3625, 35pm2.65da 599 . . . . . . . . . 10 ((𝜑𝑥𝑋) → ¬ 𝐵 = 0)
3736neqned 2797 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
38 eldifsn 4292 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3923, 37, 38sylanbrc 697 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
40 dvdivbd.d . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
41 dvdivbd.bdv . . . . . . . 8 (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐷))
4219, 20, 21, 22, 39, 40, 41dvmptdiv 39460 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4318, 42syl5eq 2667 . . . . . 6 (𝜑𝐹 = (𝑥𝑋 ↦ (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
4421, 23mulcld 10011 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶 · 𝐵) ∈ ℂ)
4540, 20mulcld 10011 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
4644, 45subcld 10343 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶 · 𝐵) − (𝐷 · 𝐴)) ∈ ℂ)
4723sqcld 12953 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ∈ ℂ)
48 sqne0 12877 . . . . . . . . 9 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
4923, 48syl 17 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
5037, 49mpbird 247 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵↑2) ≠ 0)
5146, 47, 50divcld 10752 . . . . . 6 ((𝜑𝑥𝑋) → (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)) ∈ ℂ)
5243, 51fvmpt2d 6255 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = (((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2)))
5352fveq2d 6157 . . . 4 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) = (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))))
5446, 47, 50absdivd 14135 . . . . 5 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) = ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))))
5546abscld 14116 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ∈ ℝ)
567adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑈 · 𝑅) + (𝑇 · 𝑄)) ∈ ℝ)
578adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐸 ∈ ℝ+)
5814a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → 2 ∈ ℤ)
5957, 58rpexpcld 12979 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ∈ ℝ+)
6047abscld 14116 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) ∈ ℝ)
6146absge0d 14124 . . . . . 6 ((𝜑𝑥𝑋) → 0 ≤ (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))))
6244abscld 14116 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
6345abscld 14116 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ∈ ℝ)
6462, 63readdcld 10020 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ∈ ℝ)
6544, 45abs2dif2d 14138 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))))
663adantr 481 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑈 · 𝑅) ∈ ℝ)
676adantr 481 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑇 · 𝑄) ∈ ℝ)
6821, 23absmuld 14134 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
6921abscld 14116 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ∈ ℝ)
701adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑈 ∈ ℝ)
712adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑅 ∈ ℝ)
7221absge0d 14124 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐶))
7323absge0d 14124 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐵))
74 dvdivbd.cbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐶) ≤ 𝑈)
75 dvdivbd.bbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐵) ≤ 𝑅)
7669, 70, 28, 71, 72, 73, 74, 75lemul12ad 10917 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐶) · (abs‘𝐵)) ≤ (𝑈 · 𝑅))
7768, 76eqbrtrd 4640 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐶 · 𝐵)) ≤ (𝑈 · 𝑅))
7840, 20absmuld 14134 . . . . . . . . 9 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) = ((abs‘𝐷) · (abs‘𝐴)))
7940abscld 14116 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ∈ ℝ)
804adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑇 ∈ ℝ)
8120abscld 14116 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ∈ ℝ)
825adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑄 ∈ ℝ)
8340absge0d 14124 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐷))
8420absge0d 14124 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 0 ≤ (abs‘𝐴))
85 dvdivbd.dbd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐷) ≤ 𝑇)
86 dvdivbd.abd . . . . . . . . . 10 ((𝜑𝑥𝑋) → (abs‘𝐴) ≤ 𝑄)
8779, 80, 81, 82, 83, 84, 85, 86lemul12ad 10917 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((abs‘𝐷) · (abs‘𝐴)) ≤ (𝑇 · 𝑄))
8878, 87eqbrtrd 4640 . . . . . . . 8 ((𝜑𝑥𝑋) → (abs‘(𝐷 · 𝐴)) ≤ (𝑇 · 𝑄))
8962, 63, 66, 67, 77, 88le2addd 10597 . . . . . . 7 ((𝜑𝑥𝑋) → ((abs‘(𝐶 · 𝐵)) + (abs‘(𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
9055, 64, 56, 65, 89letrd 10145 . . . . . 6 ((𝜑𝑥𝑋) → (abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) ≤ ((𝑈 · 𝑅) + (𝑇 · 𝑄)))
91 2nn0 11260 . . . . . . . . 9 2 ∈ ℕ0
9291a1i 11 . . . . . . . 8 ((𝜑𝑥𝑋) → 2 ∈ ℕ0)
9326, 27, 29ltled 10136 . . . . . . . 8 ((𝜑𝑥𝑋) → 0 ≤ 𝐸)
94 leexp1a 12866 . . . . . . . 8 (((𝐸 ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 𝐸𝐸 ≤ (abs‘𝐵))) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9527, 28, 92, 93, 31, 94syl32anc 1331 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ ((abs‘𝐵)↑2))
9623, 92absexpd 14132 . . . . . . 7 ((𝜑𝑥𝑋) → (abs‘(𝐵↑2)) = ((abs‘𝐵)↑2))
9795, 96breqtrrd 4646 . . . . . 6 ((𝜑𝑥𝑋) → (𝐸↑2) ≤ (abs‘(𝐵↑2)))
9855, 56, 59, 60, 61, 90, 97lediv12ad 11882 . . . . 5 ((𝜑𝑥𝑋) → ((abs‘((𝐶 · 𝐵) − (𝐷 · 𝐴))) / (abs‘(𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
9954, 98eqbrtrd 4640 . . . 4 ((𝜑𝑥𝑋) → (abs‘(((𝐶 · 𝐵) − (𝐷 · 𝐴)) / (𝐵↑2))) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
10053, 99eqbrtrd 4640 . . 3 ((𝜑𝑥𝑋) → (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
101100ralrimiva 2961 . 2 (𝜑 → ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)))
102 breq2 4622 . . . 4 (𝑏 = (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2))))
103102ralbidv 2981 . . 3 (𝑏 = (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) → (∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏 ↔ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2))))
104103rspcev 3298 . 2 (((((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2)) ∈ ℝ ∧ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ (((𝑈 · 𝑅) + (𝑇 · 𝑄)) / (𝐸↑2))) → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
10517, 101, 104syl2anc 692 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥𝑋 (abs‘(𝐹𝑥)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  cdif 3556  {csn 4153  {cpr 4155   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887   + caddc 9890   · cmul 9892   < clt 10025  cle 10026  cmin 10217   / cdiv 10635  2c2 11021  0cn0 11243  cz 11328  +crp 11783  cexp 12807  abscabs 13915   D cdv 23546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-icc 12131  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-t1 21037  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550
This theorem is referenced by:  fourierdlem68  39719
  Copyright terms: Public domain W3C validator