MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsaddre2b Structured version   Visualization version   GIF version

Theorem dvdsaddre2b 14813
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 14812 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
dvdsaddre2b ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))

Proof of Theorem dvdsaddre2b
StepHypRef Expression
1 dvdsadd2b 14812 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
21a1d 25 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
323exp 1255 . . . . 5 (𝐴 ∈ ℤ → (𝐵 ∈ ℤ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
43com24 92 . . . 4 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))))
543imp 1248 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
65com12 32 . 2 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
7 dvdszrcl 14772 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
8 pm2.24 119 . . . . . . 7 (𝐵 ∈ ℤ → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
97, 8simpl2im 655 . . . . . 6 (𝐴𝐵 → (¬ 𝐵 ∈ ℤ → 𝐴 ∥ (𝐶 + 𝐵)))
109com12 32 . . . . 5 𝐵 ∈ ℤ → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
1110adantr 479 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
12 dvdszrcl 14772 . . . . . 6 (𝐴 ∥ (𝐶 + 𝐵) → (𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ))
13 zcn 11215 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1413adantr 479 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐶 ∈ ℂ)
15 recn 9882 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1615ad2antrl 759 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
1714, 16addcomd 10089 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
18 eldif 3549 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (ℝ ∖ ℤ) ↔ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ))
19 nzadd 11258 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ (ℝ ∖ ℤ))
2019eldifbd 3552 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (ℝ ∖ ℤ) ∧ 𝐶 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2120expcom 449 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → (𝐵 ∈ (ℝ ∖ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2218, 21syl5bir 231 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℤ → ((𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ) → ¬ (𝐵 + 𝐶) ∈ ℤ))
2322imp 443 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐵 + 𝐶) ∈ ℤ)
2417, 23eqneltrd 2706 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ (𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ)) → ¬ (𝐶 + 𝐵) ∈ ℤ)
2524exp32 628 . . . . . . . . . . . . 13 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ¬ (𝐶 + 𝐵) ∈ ℤ)))
26 pm2.21 118 . . . . . . . . . . . . 13 (¬ (𝐶 + 𝐵) ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
2725, 26syl8 73 . . . . . . . . . . . 12 (𝐶 ∈ ℤ → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2827adantr 479 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (𝐵 ∈ ℝ → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
2928com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))))
3029a1i 11 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐵 ∈ ℝ → ((𝐶 ∈ ℤ ∧ 𝐴𝐶) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))))
31303imp 1248 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (¬ 𝐵 ∈ ℤ → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵)))
3231impcom 444 . . . . . . 7 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → ((𝐶 + 𝐵) ∈ ℤ → 𝐴𝐵))
3332com12 32 . . . . . 6 ((𝐶 + 𝐵) ∈ ℤ → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3412, 33simpl2im 655 . . . . 5 (𝐴 ∥ (𝐶 + 𝐵) → ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → 𝐴𝐵))
3534com12 32 . . . 4 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴 ∥ (𝐶 + 𝐵) → 𝐴𝐵))
3611, 35impbid 200 . . 3 ((¬ 𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶))) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
3736ex 448 . 2 𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵))))
386, 37pm2.61i 174 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030  wcel 1976  cdif 3536   class class class wbr 4577  (class class class)co 6527  cc 9790  cr 9791   + caddc 9795  cz 11210  cdvds 14767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-dvds 14768
This theorem is referenced by:  2lgsoddprmlem2  24851
  Copyright terms: Public domain W3C validator