MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmul1 Structured version   Visualization version   GIF version

Theorem dvdsmul1 14946
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))

Proof of Theorem dvdsmul1
StepHypRef Expression
1 zcn 11342 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 zcn 11342 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3 mulcom 9982 . . 3 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) = (𝑀 · 𝑁))
41, 2, 3syl2anr 495 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝑀) = (𝑀 · 𝑁))
5 zmulcl 11386 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
6 dvds0lem 14935 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑁 · 𝑀) = (𝑀 · 𝑁)) → 𝑀 ∥ (𝑀 · 𝑁))
76ex 450 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁)))
873com12 1266 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁)))
95, 8mpd3an3 1422 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁)))
104, 9mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4623  (class class class)co 6615  cc 9894   · cmul 9901  cz 11337  cdvds 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-ltxr 10039  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-dvds 14927
This theorem is referenced by:  dvdsmultr1  14962  3dvdsdec  14997  3dvdsdecOLD  14998  3dvds2dec  14999  3dvds2decOLD  15000  2teven  15022  opoe  15030  omoe  15031  z4even  15051  ndvdsi  15079  bits0e  15094  bits0o  15095  mulgcd  15208  dvdsmulgcd  15217  lcmcllem  15252  lcmgcdlem  15262  qredeq  15314  cncongr2  15325  nprm  15344  exprmfct  15359  phimullem  15427  prmdiv  15433  iserodd  15483  difsqpwdvds  15534  expnprm  15549  pockthlem  15552  prmreclem3  15565  4sqlem14  15605  odmulg2  17912  odbezout  17915  gexdvds  17939  sylow2alem2  17973  odadd1  18191  odadd2  18192  gexexlem  18195  prmirredlem  19781  znunit  19852  wilthlem2  24729  dvdsflf1o  24847  dvdsmulf1o  24854  ppiublem1  24861  ppiublem2  24862  perfectlem1  24888  bposlem3  24945  lgsdir  24991  lgsquadlem1  25039  lgsquad2lem1  25043  lgsquad2lem2  25044  2lgsoddprmlem2  25068  2lgsoddprmlem3  25073  2sqlem4  25080  2sqblem  25090  dchrisumlem1  25112  ex-ind-dvds  27206  2sqmod  29475  jm2.23  37082  jm2.27c  37093  inductionexd  37974  fouriersw  39785  etransclem24  39812  etransclem28  39816  2pwp1prm  40832  perfectALTVlem1  40955
  Copyright terms: Public domain W3C validator