MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmul2 Structured version   Visualization version   GIF version

Theorem dvdsmul2 14788
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))

Proof of Theorem dvdsmul2
StepHypRef Expression
1 zmulcl 11259 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
2 eqid 2609 . . 3 (𝑀 · 𝑁) = (𝑀 · 𝑁)
3 dvds0lem 14776 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑀 · 𝑁) = (𝑀 · 𝑁)) → 𝑁 ∥ (𝑀 · 𝑁))
42, 3mpan2 702 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
51, 4mpd3an3 1416 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  (class class class)co 6527   · cmul 9797  cz 11210  cdvds 14767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-ltxr 9935  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-dvds 14768
This theorem is referenced by:  iddvdsexp  14789  dvdsmultr2  14805  dvdsfac  14832  dvdsexp  14833  fprodfvdvdsd  14842  bitsinv1lem  14947  bitsuz  14980  bitsshft  14981  bezoutlem4  15043  dvdssqim  15057  lcmcllem  15093  coprmdvdsOLD  15151  qredeq  15155  cncongr1  15165  hashdvds  15264  phimullem  15268  difsqpwdvds  15375  oddprmdvds  15391  4sqlem8  15433  prmdvdsprmo  15530  dec2dvds  15551  lagsubg  17425  odadd2  18021  ppiublem1  24644  perfectlem2  24672  lgsdir2lem2  24768  lgsquadlem2  24823  lgsquadlem3  24824  lgsquad2lem1  24826  lgsquad2lem2  24827  2sqlem3  24862  2sqlem8  24868  clwwlkndivn  26130  dvdspw  30695  jm2.19lem2  36378  jm2.23  36384  jm2.20nn  36385  jm2.25  36387  jm2.27a  36393  lighneallem4  39870  perfectALTVlem2  39970  clwwlksndivn  41266
  Copyright terms: Public domain W3C validator