MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsnprmd Structured version   Visualization version   GIF version

Theorem dvdsnprmd 15184
Description: If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
Hypotheses
Ref Expression
dvdsnprmd.g (𝜑 → 1 < 𝐴)
dvdsnprmd.l (𝜑𝐴 < 𝑁)
dvdsnprmd.d (𝜑𝐴𝑁)
Assertion
Ref Expression
dvdsnprmd (𝜑 → ¬ 𝑁 ∈ ℙ)

Proof of Theorem dvdsnprmd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dvdsnprmd.d . 2 (𝜑𝐴𝑁)
2 dvdszrcl 14769 . . . 4 (𝐴𝑁 → (𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 divides 14766 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
41, 2, 33syl 18 . . 3 (𝜑 → (𝐴𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁))
5 2z 11239 . . . . . . . . 9 2 ∈ ℤ
65a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ∈ ℤ)
7 simplr 787 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ ℤ)
8 dvdsnprmd.l . . . . . . . . . . . . 13 (𝜑𝐴 < 𝑁)
98adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → 𝐴 < 𝑁)
109adantr 479 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < 𝑁)
11 breq2 4578 . . . . . . . . . . . 12 ((𝑘 · 𝐴) = 𝑁 → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1211adantl 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 < (𝑘 · 𝐴) ↔ 𝐴 < 𝑁))
1310, 12mpbird 245 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 < (𝑘 · 𝐴))
14 dvdsnprmd.g . . . . . . . . . . . . . 14 (𝜑 → 1 < 𝐴)
15 zre 11211 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
16153ad2ant1 1074 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝐴 ∈ ℝ)
17 zre 11211 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
18173ad2ant3 1076 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
19 0lt1 10396 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
20 0red 9894 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 0 ∈ ℝ)
21 1red 9908 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℤ → 1 ∈ ℝ)
22 lttr 9962 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2320, 21, 15, 22syl3anc 1317 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℤ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
2419, 23mpani 707 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℤ → (1 < 𝐴 → 0 < 𝐴))
2524imp 443 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 0 < 𝐴)
26253adant3 1073 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → 0 < 𝐴)
2716, 18, 263jca 1234 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 1 < 𝐴𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
28273exp 1255 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
2928adantr 479 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
301, 2, 293syl 18 . . . . . . . . . . . . . 14 (𝜑 → (1 < 𝐴 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))))
3114, 30mpd 15 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ ℤ → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴)))
3231imp 443 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
3332adantr 479 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴))
34 ltmulgt12 10730 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3533, 34syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (1 < 𝑘𝐴 < (𝑘 · 𝐴)))
3613, 35mpbird 245 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 1 < 𝑘)
37 df-2 10923 . . . . . . . . . . 11 2 = (1 + 1)
3837breq1i 4581 . . . . . . . . . 10 (2 ≤ 𝑘 ↔ (1 + 1) ≤ 𝑘)
39 1zzd 11238 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → 1 ∈ ℤ)
40 zltp1le 11257 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4139, 40mpancom 699 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘))
4241bicomd 211 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4342adantl 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4443adantr 479 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ((1 + 1) ≤ 𝑘 ↔ 1 < 𝑘))
4538, 44syl5bb 270 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (2 ≤ 𝑘 ↔ 1 < 𝑘))
4636, 45mpbird 245 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 2 ≤ 𝑘)
47 eluz2 11522 . . . . . . . 8 (𝑘 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘))
486, 7, 46, 47syl3anbrc 1238 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝑘 ∈ (ℤ‘2))
495a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ∈ ℤ)
50 simpl 471 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 𝐴 ∈ ℤ)
51 1zzd 11238 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 1 ∈ ℤ)
52 zltp1le 11257 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5351, 52mpancom 699 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → (1 < 𝐴 ↔ (1 + 1) ≤ 𝐴))
5453biimpa 499 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (1 + 1) ≤ 𝐴)
5537breq1i 4581 . . . . . . . . . . . . . . . 16 (2 ≤ 𝐴 ↔ (1 + 1) ≤ 𝐴)
5654, 55sylibr 222 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → 2 ≤ 𝐴)
5749, 50, 563jca 1234 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 1 < 𝐴) → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
5857ex 448 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
5958adantr 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
601, 2, 593syl 18 . . . . . . . . . . 11 (𝜑 → (1 < 𝐴 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴)))
6114, 60mpd 15 . . . . . . . . . 10 (𝜑 → (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
62 eluz2 11522 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴))
6361, 62sylibr 222 . . . . . . . . 9 (𝜑𝐴 ∈ (ℤ‘2))
6463adantr 479 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
6564adantr 479 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → 𝐴 ∈ (ℤ‘2))
66 nprm 15182 . . . . . . 7 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑘 · 𝐴) ∈ ℙ)
6748, 65, 66syl2anc 690 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ (𝑘 · 𝐴) ∈ ℙ)
68 eleq1 2672 . . . . . . . 8 ((𝑘 · 𝐴) = 𝑁 → ((𝑘 · 𝐴) ∈ ℙ ↔ 𝑁 ∈ ℙ))
6968notbid 306 . . . . . . 7 ((𝑘 · 𝐴) = 𝑁 → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7069adantl 480 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → (¬ (𝑘 · 𝐴) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ))
7167, 70mpbid 220 . . . . 5 (((𝜑𝑘 ∈ ℤ) ∧ (𝑘 · 𝐴) = 𝑁) → ¬ 𝑁 ∈ ℙ)
7271ex 448 . . . 4 ((𝜑𝑘 ∈ ℤ) → ((𝑘 · 𝐴) = 𝑁 → ¬ 𝑁 ∈ ℙ))
7372rexlimdva 3009 . . 3 (𝜑 → (∃𝑘 ∈ ℤ (𝑘 · 𝐴) = 𝑁 → ¬ 𝑁 ∈ ℙ))
744, 73sylbid 228 . 2 (𝜑 → (𝐴𝑁 → ¬ 𝑁 ∈ ℙ))
751, 74mpd 15 1 (𝜑 → ¬ 𝑁 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wrex 2893   class class class wbr 4574  cfv 5787  (class class class)co 6524  cr 9788  0cc0 9789  1c1 9790   + caddc 9792   · cmul 9794   < clt 9927  cle 9928  2c2 10914  cz 11207  cuz 11516  cdvds 14764  cprime 15166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-sup 8205  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-n0 11137  df-z 11208  df-uz 11517  df-rp 11662  df-seq 12616  df-exp 12675  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-dvds 14765  df-prm 15167
This theorem is referenced by:  2pwp1prm  39843
  Copyright terms: Public domain W3C validator