![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsr | Structured version Visualization version GIF version |
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
dvdsr.3 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvdsr | ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr.2 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
2 | 1 | reldvdsr 18864 | . . 3 ⊢ Rel ∥ |
3 | brrelex12 5312 | . . 3 ⊢ ((Rel ∥ ∧ 𝑋 ∥ 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | |
4 | 2, 3 | mpan 708 | . 2 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
5 | elex 3352 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
6 | id 22 | . . . . 5 ⊢ ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌) | |
7 | ovex 6842 | . . . . 5 ⊢ (𝑧 · 𝑋) ∈ V | |
8 | 6, 7 | syl6eqelr 2848 | . . . 4 ⊢ ((𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
9 | 8 | rexlimivw 3167 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
10 | 5, 9 | anim12i 591 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
11 | simpl 474 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
12 | 11 | eleq1d 2824 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) |
13 | 11 | oveq2d 6830 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋)) |
14 | simpr 479 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
15 | 13, 14 | eqeq12d 2775 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌)) |
16 | 15 | rexbidv 3190 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
17 | 12, 16 | anbi12d 749 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
18 | dvdsr.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
19 | dvdsr.3 | . . . 4 ⊢ · = (.r‘𝑅) | |
20 | 18, 1, 19 | dvdsrval 18865 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} |
21 | 17, 20 | brabga 5139 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
22 | 4, 10, 21 | pm5.21nii 367 | 1 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 Vcvv 3340 class class class wbr 4804 Rel wrel 5271 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 .rcmulr 16164 ∥rcdsr 18858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-dvdsr 18861 |
This theorem is referenced by: dvdsr2 18867 dvdsrmul 18868 dvdsrcl 18869 dvdsrcl2 18870 dvdsrtr 18872 dvdsrmul1 18873 opprunit 18881 crngunit 18882 subrgdvds 19016 rhmdvdsr 30148 |
Copyright terms: Public domain | W3C validator |