MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr01 Structured version   Visualization version   GIF version

Theorem dvdsr01 18427
Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg 19053.) (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
dvdsr0.b 𝐵 = (Base‘𝑅)
dvdsr0.d = (∥r𝑅)
dvdsr0.z 0 = (0g𝑅)
Assertion
Ref Expression
dvdsr01 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 0 )

Proof of Theorem dvdsr01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdsr0.b . . . . 5 𝐵 = (Base‘𝑅)
2 dvdsr0.z . . . . 5 0 = (0g𝑅)
31, 2ring0cl 18341 . . . 4 (𝑅 ∈ Ring → 0𝐵)
43adantr 480 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 0𝐵)
5 eqid 2610 . . . 4 (.r𝑅) = (.r𝑅)
61, 5, 2ringlz 18359 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (.r𝑅)𝑋) = 0 )
7 oveq1 6534 . . . . 5 (𝑥 = 0 → (𝑥(.r𝑅)𝑋) = ( 0 (.r𝑅)𝑋))
87eqeq1d 2612 . . . 4 (𝑥 = 0 → ((𝑥(.r𝑅)𝑋) = 0 ↔ ( 0 (.r𝑅)𝑋) = 0 ))
98rspcev 3282 . . 3 (( 0𝐵 ∧ ( 0 (.r𝑅)𝑋) = 0 ) → ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 0 )
104, 6, 9syl2anc 691 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 0 )
11 dvdsr0.d . . . 4 = (∥r𝑅)
121, 11, 5dvdsr2 18419 . . 3 (𝑋𝐵 → (𝑋 0 ↔ ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 0 ))
1312adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 0 ↔ ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 0 ))
1410, 13mpbird 246 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4578  cfv 5790  (class class class)co 6527  Basecbs 15644  .rcmulr 15718  0gc0g 15872  Ringcrg 18319  rcdsr 18410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-plusg 15730  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-minusg 17198  df-mgp 18262  df-ring 18321  df-dvdsr 18413
This theorem is referenced by:  ig1pdvds  23685
  Copyright terms: Public domain W3C validator