MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr1p Structured version   Visualization version   GIF version

Theorem dvdsr1p 24120
Description: Divisibility in a polynomial ring in terms of the remainder. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
dvdsq1p.p 𝑃 = (Poly1𝑅)
dvdsq1p.d = (∥r𝑃)
dvdsq1p.b 𝐵 = (Base‘𝑃)
dvdsq1p.c 𝐶 = (Unic1p𝑅)
dvdsr1p.z 0 = (0g𝑃)
dvdsr1p.e 𝐸 = (rem1p𝑅)
Assertion
Ref Expression
dvdsr1p ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹 ↔ (𝐹𝐸𝐺) = 0 ))

Proof of Theorem dvdsr1p
StepHypRef Expression
1 dvdsq1p.p . . . . . 6 𝑃 = (Poly1𝑅)
21ply1ring 19820 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1128 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Ring)
4 ringgrp 18752 . . . 4 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
53, 4syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Grp)
6 simp2 1132 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
7 eqid 2760 . . . . 5 (quot1p𝑅) = (quot1p𝑅)
8 dvdsq1p.b . . . . 5 𝐵 = (Base‘𝑃)
9 dvdsq1p.c . . . . 5 𝐶 = (Unic1p𝑅)
107, 1, 8, 9q1pcl 24114 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
111, 8, 9uc1pcl 24102 . . . . 5 (𝐺𝐶𝐺𝐵)
12113ad2ant3 1130 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
13 eqid 2760 . . . . 5 (.r𝑃) = (.r𝑃)
148, 13ringcl 18761 . . . 4 ((𝑃 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
153, 10, 12, 14syl3anc 1477 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
16 dvdsr1p.z . . . 4 0 = (0g𝑃)
17 eqid 2760 . . . 4 (-g𝑃) = (-g𝑃)
188, 16, 17grpsubeq0 17702 . . 3 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵) → ((𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = 0𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
195, 6, 15, 18syl3anc 1477 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = 0𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
20 dvdsr1p.e . . . . 5 𝐸 = (rem1p𝑅)
2120, 1, 8, 7, 13, 17r1pval 24115 . . . 4 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
226, 12, 21syl2anc 696 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
2322eqeq1d 2762 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹𝐸𝐺) = 0 ↔ (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = 0 ))
24 dvdsq1p.d . . 3 = (∥r𝑃)
251, 24, 8, 9, 13, 7dvdsq1p 24119 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
2619, 23, 253bitr4rd 301 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹 ↔ (𝐹𝐸𝐺) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6813  Basecbs 16059  .rcmulr 16144  0gc0g 16302  Grpcgrp 17623  -gcsg 17625  Ringcrg 18747  rcdsr 18838  Poly1cpl1 19749  Unic1pcuc1p 24085  quot1pcq1p 24086  rem1pcr1p 24087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-ofr 7063  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-subrg 18980  df-lmod 19067  df-lss 19135  df-rlreg 19485  df-psr 19558  df-mvr 19559  df-mpl 19560  df-opsr 19562  df-psr1 19752  df-vr1 19753  df-ply1 19754  df-coe1 19755  df-cnfld 19949  df-mdeg 24014  df-deg1 24015  df-uc1p 24090  df-q1p 24091  df-r1p 24092
This theorem is referenced by:  facth1  24123  ig1pdvds  24135
  Copyright terms: Public domain W3C validator