![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsr1p | Structured version Visualization version GIF version |
Description: Divisibility in a polynomial ring in terms of the remainder. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
dvdsq1p.p | ⊢ 𝑃 = (Poly1‘𝑅) |
dvdsq1p.d | ⊢ ∥ = (∥r‘𝑃) |
dvdsq1p.b | ⊢ 𝐵 = (Base‘𝑃) |
dvdsq1p.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
dvdsr1p.z | ⊢ 0 = (0g‘𝑃) |
dvdsr1p.e | ⊢ 𝐸 = (rem1p‘𝑅) |
Ref | Expression |
---|---|
dvdsr1p | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ (𝐹𝐸𝐺) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsq1p.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1ring 19820 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | 2 | 3ad2ant1 1128 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Ring) |
4 | ringgrp 18752 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Grp) |
6 | simp2 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
7 | eqid 2760 | . . . . 5 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
8 | dvdsq1p.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
9 | dvdsq1p.c | . . . . 5 ⊢ 𝐶 = (Unic1p‘𝑅) | |
10 | 7, 1, 8, 9 | q1pcl 24114 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
11 | 1, 8, 9 | uc1pcl 24102 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
12 | 11 | 3ad2ant3 1130 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
13 | eqid 2760 | . . . . 5 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
14 | 8, 13 | ringcl 18761 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
15 | 3, 10, 12, 14 | syl3anc 1477 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
16 | dvdsr1p.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
17 | eqid 2760 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
18 | 8, 16, 17 | grpsubeq0 17702 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) → ((𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = 0 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
19 | 5, 6, 15, 18 | syl3anc 1477 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = 0 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
20 | dvdsr1p.e | . . . . 5 ⊢ 𝐸 = (rem1p‘𝑅) | |
21 | 20, 1, 8, 7, 13, 17 | r1pval 24115 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
22 | 6, 12, 21 | syl2anc 696 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
23 | 22 | eqeq1d 2762 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝐸𝐺) = 0 ↔ (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = 0 )) |
24 | dvdsq1p.d | . . 3 ⊢ ∥ = (∥r‘𝑃) | |
25 | 1, 24, 8, 9, 13, 7 | dvdsq1p 24119 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
26 | 19, 23, 25 | 3bitr4rd 301 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ (𝐹𝐸𝐺) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 .rcmulr 16144 0gc0g 16302 Grpcgrp 17623 -gcsg 17625 Ringcrg 18747 ∥rcdsr 18838 Poly1cpl1 19749 Unic1pcuc1p 24085 quot1pcq1p 24086 rem1pcr1p 24087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-ofr 7063 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-sup 8513 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-fzo 12660 df-seq 12996 df-hash 13312 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-0g 16304 df-gsum 16305 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-submnd 17537 df-grp 17626 df-minusg 17627 df-sbg 17628 df-mulg 17742 df-subg 17792 df-ghm 17859 df-cntz 17950 df-cmn 18395 df-abl 18396 df-mgp 18690 df-ur 18702 df-ring 18749 df-cring 18750 df-oppr 18823 df-dvdsr 18841 df-unit 18842 df-invr 18872 df-subrg 18980 df-lmod 19067 df-lss 19135 df-rlreg 19485 df-psr 19558 df-mvr 19559 df-mpl 19560 df-opsr 19562 df-psr1 19752 df-vr1 19753 df-ply1 19754 df-coe1 19755 df-cnfld 19949 df-mdeg 24014 df-deg1 24015 df-uc1p 24090 df-q1p 24091 df-r1p 24092 |
This theorem is referenced by: facth1 24123 ig1pdvds 24135 |
Copyright terms: Public domain | W3C validator |