MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrmul Structured version   Visualization version   GIF version

Theorem dvdsrmul 18420
Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsrmul ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))

Proof of Theorem dvdsrmul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl 472 . 2 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2 simpr 476 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3 eqid 2610 . . 3 (𝑌 · 𝑋) = (𝑌 · 𝑋)
4 oveq1 6534 . . . . 5 (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋))
54eqeq1d 2612 . . . 4 (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋)))
65rspcev 3282 . . 3 ((𝑌𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))
72, 3, 6sylancl 693 . 2 ((𝑋𝐵𝑌𝐵) → ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋))
8 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
9 dvdsr.2 . . 3 = (∥r𝑅)
10 dvdsr.3 . . 3 · = (.r𝑅)
118, 9, 10dvdsr 18418 . 2 (𝑋 (𝑌 · 𝑋) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)))
121, 7, 11sylanbrc 695 1 ((𝑋𝐵𝑌𝐵) → 𝑋 (𝑌 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4578  cfv 5790  (class class class)co 6527  Basecbs 15644  .rcmulr 15718  rcdsr 18410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-dvdsr 18413
This theorem is referenced by:  dvdsrid  18423  dvdsrtr  18424  dvdsrmul1  18425  dvdsrneg  18426  unitmulclb  18437  unitgrp  18439  isdrng2  18529  subrguss  18567  subrgunit  18570  fidomndrnglem  19076  invrvald  20249  dvdsq1p  23669  matunitlindflem2  32370
  Copyright terms: Public domain W3C validator