MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrtr Structured version   Visualization version   GIF version

Theorem dvdsrtr 18423
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
Assertion
Ref Expression
dvdsrtr ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)

Proof of Theorem dvdsrtr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . 6 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . . . . 6 = (∥r𝑅)
3 eqid 2609 . . . . . 6 (.r𝑅) = (.r𝑅)
41, 2, 3dvdsr 18417 . . . . 5 (𝑌 𝑍 ↔ (𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍))
51, 2, 3dvdsr 18417 . . . . 5 (𝑍 𝑋 ↔ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
64, 5anbi12i 728 . . . 4 ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
7 an4 860 . . . 4 (((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
86, 7bitri 262 . . 3 ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
9 reeanv 3085 . . . . 5 (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) ↔ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
10 simplrl 795 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌𝐵)
11 simpll 785 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑅 ∈ Ring)
12 simprr 791 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑥𝐵)
13 simprl 789 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑦𝐵)
141, 3ringcl 18332 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1511, 12, 13, 14syl3anc 1317 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
161, 2, 3dvdsrmul 18419 . . . . . . . . 9 ((𝑌𝐵 ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐵) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
1710, 15, 16syl2anc 690 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
181, 3ringass 18335 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑌𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
1911, 12, 13, 10, 18syl13anc 1319 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
2017, 19breqtrd 4603 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
21 oveq2 6534 . . . . . . . . 9 ((𝑦(.r𝑅)𝑌) = 𝑍 → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = (𝑥(.r𝑅)𝑍))
22 id 22 . . . . . . . . 9 ((𝑥(.r𝑅)𝑍) = 𝑋 → (𝑥(.r𝑅)𝑍) = 𝑋)
2321, 22sylan9eq 2663 . . . . . . . 8 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = 𝑋)
2423breq2d 4589 . . . . . . 7 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) ↔ 𝑌 𝑋))
2520, 24syl5ibcom 233 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
2625rexlimdvva 3019 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
279, 26syl5bir 231 . . . 4 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → ((∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
2827expimpd 626 . . 3 (𝑅 ∈ Ring → (((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) → 𝑌 𝑋))
298, 28syl5bi 230 . 2 (𝑅 ∈ Ring → ((𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋))
30293impib 1253 1 ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wrex 2896   class class class wbr 4577  cfv 5789  (class class class)co 6526  Basecbs 15643  .rcmulr 15717  Ringcrg 18318  rcdsr 18409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-plusg 15729  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-mgp 18261  df-ring 18320  df-dvdsr 18412
This theorem is referenced by:  dvdsunit  18434  unitmulcl  18435  unitnegcl  18452
  Copyright terms: Public domain W3C validator