MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdstr Structured version   Visualization version   GIF version

Theorem dvdstr 14999
Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))

Proof of Theorem dvdstr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 1056 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2 3simpc 1058 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 3simpb 1057 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 zmulcl 11411 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
54adantl 482 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
6 oveq2 6643 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀))
76adantr 481 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀))
8 eqeq2 2631 . . . . 5 ((𝑦 · 𝑀) = 𝑁 → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
98adantl 482 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
107, 9mpbid 222 . . 3 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = 𝑁)
11 zcn 11367 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
12 zcn 11367 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
13 zcn 11367 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
14 mulass 10009 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑥 · (𝑦 · 𝐾)))
15 mul12 10187 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑥 · (𝑦 · 𝐾)) = (𝑦 · (𝑥 · 𝐾)))
1614, 15eqtrd 2654 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
1711, 12, 13, 16syl3an 1366 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
18173comr 1271 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
19183expb 1264 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
20193ad2antl1 1221 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
2120eqeq1d 2622 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝑦) · 𝐾) = 𝑁 ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
2210, 21syl5ibr 236 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑥 · 𝑦) · 𝐾) = 𝑁))
231, 2, 3, 5, 22dvds2lem 14975 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988   class class class wbr 4644  (class class class)co 6635  cc 9919   · cmul 9926  cz 11362  cdvds 14964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-ltxr 10064  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-z 11363  df-dvds 14965
This theorem is referenced by:  dvdsmultr1  15000  dvdsmultr2  15002  4dvdseven  15090  bitsmod  15139  dvdsgcdb  15243  dvdsmulgcd  15255  gcddvdslcm  15296  lcmgcdeq  15306  lcmdvdsb  15307  lcmftp  15330  lcmfunsnlem2lem2  15333  lcmfdvdsb  15337  mulgcddvds  15350  rpmulgcd2  15351  rpdvds  15355  exprmfct  15397  isprm5  15400  rpexp  15413  phimullem  15465  pcpremul  15529  pcdvdsb  15554  pcdvdstr  15561  pcprmpw2  15567  pockthlem  15590  prmreclem3  15603  4sqlem8  15630  odmulg  17954  ablfac1b  18450  ablfac1eu  18453  znunit  19893  wilth  24778  muval1  24840  dvdssqf  24845  sqff1o  24889  fsumdvdsdiaglem  24890  dvdsmulf1o  24901  vmasum  24922  bposlem3  24992  lgsmod  25029  lgsquad2lem1  25090  2sqlem3  25126  2sqlem8  25132  dvdspw  31611  dvdsacongtr  37370  jm2.20nn  37383  jm2.27a  37391  jm2.27c  37393  goldbachthlem2  41223
  Copyright terms: Public domain W3C validator