MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvef Structured version   Visualization version   GIF version

Theorem dvef 23724
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 23653 . . . . . . 7 (ℂ D exp):dom (ℂ D exp)⟶ℂ
2 dvbsss 23647 . . . . . . . . 9 dom (ℂ D exp) ⊆ ℂ
3 efcl 14794 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
4 fconstg 6079 . . . . . . . . . . . . . . . 16 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
53, 4syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
63snssd 4331 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
75, 6fssd 6044 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
8 ssid 3616 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
98a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
10 subcl 10265 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
1110ancoms 469 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
12 efcl 14794 . . . . . . . . . . . . . . . 16 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
1311, 12syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
14 eqid 2620 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))
1513, 14fmptd 6371 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
16 0cn 10017 . . . . . . . . . . . . . . 15 0 ∈ ℂ
1716a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 0 ∈ ℂ)
18 ax-1cn 9979 . . . . . . . . . . . . . . 15 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 1 ∈ ℂ)
2016elexi 3208 . . . . . . . . . . . . . . . . . 18 0 ∈ V
2120snid 4199 . . . . . . . . . . . . . . . . 17 0 ∈ {0}
22 opelxpi 5138 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
2321, 22mpan2 706 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
24 dvconst 23661 . . . . . . . . . . . . . . . . 17 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
253, 24syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
2623, 25eleqtrrd 2702 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
27 df-br 4645 . . . . . . . . . . . . . . 15 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
2826, 27sylibr 224 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
29 eff 14793 . . . . . . . . . . . . . . . . . 18 exp:ℂ⟶ℂ
3029a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
31 eqid 2620 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
3211, 31fmptd 6371 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
33 oveq1 6642 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
34 ovex 6663 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑥) ∈ V
3533, 31, 34fvmpt 6269 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
36 subid 10285 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
3735, 36eqtrd 2654 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
38 dveflem 23723 . . . . . . . . . . . . . . . . . 18 0(ℂ D exp)1
3937, 38syl6eqbr 4683 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
4018elexi 3208 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ V
4140snid 4199 . . . . . . . . . . . . . . . . . . . 20 1 ∈ {1}
42 opelxpi 5138 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
4341, 42mpan2 706 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
44 cnelprrecn 10014 . . . . . . . . . . . . . . . . . . . . . 22 ℂ ∈ {ℝ, ℂ}
4544a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
46 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
4718a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
4845dvmptid 23701 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
49 simpl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
5016a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
51 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
5245, 51dvmptc 23702 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
5345, 46, 47, 48, 49, 50, 52dvmptsub 23711 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
54 1m0e1 11116 . . . . . . . . . . . . . . . . . . . . . 22 (1 − 0) = 1
5554mpteq2i 4732 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
56 fconstmpt 5153 . . . . . . . . . . . . . . . . . . . . 21 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
5755, 56eqtr4i 2645 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
5853, 57syl6eq 2670 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
5943, 58eleqtrrd 2702 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
60 df-br 4645 . . . . . . . . . . . . . . . . . 18 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
6159, 60sylibr 224 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
62 eqid 2620 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6330, 9, 32, 9, 9, 9, 19, 19, 39, 61, 62dvcobr 23690 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
64 1t1e1 11160 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
6563, 64syl6breq 4685 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
66 eqidd 2621 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥)))
6730feqmptd 6236 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
68 fveq2 6178 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑧𝑥) → (exp‘𝑦) = (exp‘(𝑧𝑥)))
6911, 66, 67, 68fmptco 6382 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
7069oveq2d 6651 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
7170breqd 4655 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1 ↔ 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1))
7265, 71mpbid 222 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
737, 9, 15, 9, 9, 17, 19, 28, 72, 62dvmulbr 23683 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
7415, 51ffvelrnd 6346 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
7574mul02d 10219 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
76 fvex 6188 . . . . . . . . . . . . . . . . . 18 (exp‘𝑥) ∈ V
7776fvconst2 6454 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
7877oveq2d 6651 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
793mulid2d 10043 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
8078, 79eqtrd 2654 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
8175, 80oveq12d 6653 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
823addid2d 10222 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
8381, 82eqtrd 2654 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
8473, 83breqtrd 4670 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
85 cnex 10002 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
8685a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ℂ ∈ V)
8776a1i 11 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ V)
88 fvex 6188 . . . . . . . . . . . . . . . . 17 (exp‘(𝑧𝑥)) ∈ V
8988a1i 11 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ V)
90 fconstmpt 5153 . . . . . . . . . . . . . . . . 17 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
9190a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
92 eqidd 2621 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
9386, 87, 89, 91, 92offval2 6899 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
9430feqmptd 6236 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
95 efadd 14805 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
9611, 95syldan 487 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
97 pncan3 10274 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
9897fveq2d 6182 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
9996, 98eqtr3d 2656 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
10099mpteq2dva 4735 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
10194, 100eqtr4d 2657 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
10293, 101eqtr4d 2657 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
103102oveq2d 6651 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
104103breqd 4655 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥) ↔ 𝑥(ℂ D exp)(exp‘𝑥)))
10584, 104mpbid 222 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
106 vex 3198 . . . . . . . . . . . 12 𝑥 ∈ V
107106, 76breldm 5318 . . . . . . . . . . 11 (𝑥(ℂ D exp)(exp‘𝑥) → 𝑥 ∈ dom (ℂ D exp))
108105, 107syl 17 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
109108ssriv 3599 . . . . . . . . 9 ℂ ⊆ dom (ℂ D exp)
1102, 109eqssi 3611 . . . . . . . 8 dom (ℂ D exp) = ℂ
111110feq2i 6024 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
1121, 111mpbi 220 . . . . . 6 (ℂ D exp):ℂ⟶ℂ
113112a1i 11 . . . . 5 (⊤ → (ℂ D exp):ℂ⟶ℂ)
114113feqmptd 6236 . . . 4 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
115 ffun 6035 . . . . . . 7 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
1161, 115ax-mp 5 . . . . . 6 Fun (ℂ D exp)
117 funbrfv 6221 . . . . . 6 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
118116, 105, 117mpsyl 68 . . . . 5 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
119118mpteq2ia 4731 . . . 4 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
120114, 119syl6eq 2670 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
12129a1i 11 . . . 4 (⊤ → exp:ℂ⟶ℂ)
122121feqmptd 6236 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
123120, 122eqtr4d 2657 . 2 (⊤ → (ℂ D exp) = exp)
124123trud 1491 1 (ℂ D exp) = exp
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1481  wtru 1482  wcel 1988  Vcvv 3195  wss 3567  {csn 4168  {cpr 4170  cop 4174   class class class wbr 4644  cmpt 4720   × cxp 5102  dom cdm 5104  ccom 5108  Fun wfun 5870  wf 5872  cfv 5876  (class class class)co 6635  𝑓 cof 6880  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  cmin 10251  expce 14773  TopOpenctopn 16063  fldccnfld 19727   D cdv 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-ef 14779  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612
This theorem is referenced by:  dvsincos  23725  efcn  24178  efcvx  24184  pige3  24250  dvrelog  24364  dvlog  24378  dvcxp1  24462  dvcxp2  24463  dvcncxp1  24465  itgexpif  30658  dvsef  38351  expgrowthi  38352  expgrowth  38354
  Copyright terms: Public domain W3C validator