![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvelimnf | Structured version Visualization version GIF version |
Description: Version of dvelim 2368 using "not free" notation. (Contributed by Mario Carneiro, 9-Oct-2016.) |
Ref | Expression |
---|---|
dvelimnf.1 | ⊢ Ⅎ𝑥𝜑 |
dvelimnf.2 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dvelimnf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelimnf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1883 | . 2 ⊢ Ⅎ𝑧𝜓 | |
3 | dvelimnf.2 | . 2 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | dvelimf 2365 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1521 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 |
This theorem is referenced by: nfrab 3153 |
Copyright terms: Public domain | W3C validator |