MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp Structured version   Visualization version   GIF version

Theorem dvexp 24553
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7167 . . . . 5 (𝑛 = 1 → (𝑥𝑛) = (𝑥↑1))
21mpteq2dv 5165 . . . 4 (𝑛 = 1 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑1)))
32oveq2d 7175 . . 3 (𝑛 = 1 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))))
4 id 22 . . . . 5 (𝑛 = 1 → 𝑛 = 1)
5 oveq1 7166 . . . . . 6 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
65oveq2d 7175 . . . . 5 (𝑛 = 1 → (𝑥↑(𝑛 − 1)) = (𝑥↑(1 − 1)))
74, 6oveq12d 7177 . . . 4 (𝑛 = 1 → (𝑛 · (𝑥↑(𝑛 − 1))) = (1 · (𝑥↑(1 − 1))))
87mpteq2dv 5165 . . 3 (𝑛 = 1 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))))
93, 8eqeq12d 2840 . 2 (𝑛 = 1 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1))))))
10 oveq2 7167 . . . . 5 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
1110mpteq2dv 5165 . . . 4 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
1211oveq2d 7175 . . 3 (𝑛 = 𝑘 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))))
13 id 22 . . . . 5 (𝑛 = 𝑘𝑛 = 𝑘)
14 oveq1 7166 . . . . . 6 (𝑛 = 𝑘 → (𝑛 − 1) = (𝑘 − 1))
1514oveq2d 7175 . . . . 5 (𝑛 = 𝑘 → (𝑥↑(𝑛 − 1)) = (𝑥↑(𝑘 − 1)))
1613, 15oveq12d 7177 . . . 4 (𝑛 = 𝑘 → (𝑛 · (𝑥↑(𝑛 − 1))) = (𝑘 · (𝑥↑(𝑘 − 1))))
1716mpteq2dv 5165 . . 3 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
1812, 17eqeq12d 2840 . 2 (𝑛 = 𝑘 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))))
19 oveq2 7167 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
2019mpteq2dv 5165 . . . 4 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
2120oveq2d 7175 . . 3 (𝑛 = (𝑘 + 1) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
22 id 22 . . . . 5 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
23 oveq1 7166 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑛 − 1) = ((𝑘 + 1) − 1))
2423oveq2d 7175 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑥↑(𝑛 − 1)) = (𝑥↑((𝑘 + 1) − 1)))
2522, 24oveq12d 7177 . . . 4 (𝑛 = (𝑘 + 1) → (𝑛 · (𝑥↑(𝑛 − 1))) = ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))
2625mpteq2dv 5165 . . 3 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))))
2721, 26eqeq12d 2840 . 2 (𝑛 = (𝑘 + 1) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))))
28 oveq2 7167 . . . . 5 (𝑛 = 𝑁 → (𝑥𝑛) = (𝑥𝑁))
2928mpteq2dv 5165 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
3029oveq2d 7175 . . 3 (𝑛 = 𝑁 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))))
31 id 22 . . . . 5 (𝑛 = 𝑁𝑛 = 𝑁)
32 oveq1 7166 . . . . . 6 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
3332oveq2d 7175 . . . . 5 (𝑛 = 𝑁 → (𝑥↑(𝑛 − 1)) = (𝑥↑(𝑁 − 1)))
3431, 33oveq12d 7177 . . . 4 (𝑛 = 𝑁 → (𝑛 · (𝑥↑(𝑛 − 1))) = (𝑁 · (𝑥↑(𝑁 − 1))))
3534mpteq2dv 5165 . . 3 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
3630, 35eqeq12d 2840 . 2 (𝑛 = 𝑁 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))))
37 exp1 13438 . . . . . 6 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
3837mpteq2ia 5160 . . . . 5 (𝑥 ∈ ℂ ↦ (𝑥↑1)) = (𝑥 ∈ ℂ ↦ 𝑥)
39 mptresid 5921 . . . . 5 ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥)
4038, 39eqtr4i 2850 . . . 4 (𝑥 ∈ ℂ ↦ (𝑥↑1)) = ( I ↾ ℂ)
4140oveq2i 7170 . . 3 (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (ℂ D ( I ↾ ℂ))
42 1m1e0 11712 . . . . . . . . . 10 (1 − 1) = 0
4342oveq2i 7170 . . . . . . . . 9 (𝑥↑(1 − 1)) = (𝑥↑0)
44 exp0 13436 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
4543, 44syl5eq 2871 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥↑(1 − 1)) = 1)
4645oveq2d 7175 . . . . . . 7 (𝑥 ∈ ℂ → (1 · (𝑥↑(1 − 1))) = (1 · 1))
47 1t1e1 11802 . . . . . . 7 (1 · 1) = 1
4846, 47syl6eq 2875 . . . . . 6 (𝑥 ∈ ℂ → (1 · (𝑥↑(1 − 1))) = 1)
4948mpteq2ia 5160 . . . . 5 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (𝑥 ∈ ℂ ↦ 1)
50 fconstmpt 5617 . . . . 5 (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1)
5149, 50eqtr4i 2850 . . . 4 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (ℂ × {1})
52 dvid 24518 . . . 4 (ℂ D ( I ↾ ℂ)) = (ℂ × {1})
5351, 52eqtr4i 2850 . . 3 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (ℂ D ( I ↾ ℂ))
5441, 53eqtr4i 2850 . 2 (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1))))
55 nncn 11649 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5655adantr 483 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℂ)
57 ax-1cn 10598 . . . . . . . . . . 11 1 ∈ ℂ
58 pncan 10895 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
5956, 57, 58sylancl 588 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
6059oveq2d 7175 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑((𝑘 + 1) − 1)) = (𝑥𝑘))
6160oveq2d 7175 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑥𝑘)))
6257a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
63 id 22 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
64 nnnn0 11907 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
65 expcl 13450 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6663, 64, 65syl2anr 598 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥𝑘) ∈ ℂ)
6756, 62, 66adddird 10669 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥𝑘)) = ((𝑘 · (𝑥𝑘)) + (1 · (𝑥𝑘))))
6866mulid2d 10662 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (1 · (𝑥𝑘)) = (𝑥𝑘))
6968oveq2d 7175 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥𝑘)) + (1 · (𝑥𝑘))) = ((𝑘 · (𝑥𝑘)) + (𝑥𝑘)))
7061, 67, 693eqtrd 2863 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))) = ((𝑘 · (𝑥𝑘)) + (𝑥𝑘)))
7170mpteq2dva 5164 . . . . . 6 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥𝑘)) + (𝑥𝑘))))
72 cnex 10621 . . . . . . . 8 ℂ ∈ V
7372a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → ℂ ∈ V)
7456, 66mulcld 10664 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥𝑘)) ∈ ℂ)
75 nnm1nn0 11941 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
76 expcl 13450 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑥↑(𝑘 − 1)) ∈ ℂ)
7763, 75, 76syl2anr 598 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 − 1)) ∈ ℂ)
7856, 77mulcld 10664 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥↑(𝑘 − 1))) ∈ ℂ)
79 simpr 487 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
80 eqidd 2825 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
8139a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥))
8273, 78, 79, 80, 81offval2 7429 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥)))
8356, 77, 79mulassd 10667 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥) = (𝑘 · ((𝑥↑(𝑘 − 1)) · 𝑥)))
84 expm1t 13460 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝑥𝑘) = ((𝑥↑(𝑘 − 1)) · 𝑥))
8584ancoms 461 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥𝑘) = ((𝑥↑(𝑘 − 1)) · 𝑥))
8685oveq2d 7175 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥𝑘)) = (𝑘 · ((𝑥↑(𝑘 − 1)) · 𝑥)))
8783, 86eqtr4d 2862 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥) = (𝑘 · (𝑥𝑘)))
8887mpteq2dva 5164 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥𝑘))))
8982, 88eqtrd 2859 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥𝑘))))
9052, 50eqtri 2847 . . . . . . . . . 10 (ℂ D ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ 1)
9190a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → (ℂ D ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ 1))
92 eqidd 2825 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9373, 62, 66, 91, 92offval2 7429 . . . . . . . 8 (𝑘 ∈ ℕ → ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥𝑘))))
9468mpteq2dva 5164 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (1 · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9593, 94eqtrd 2859 . . . . . . 7 (𝑘 ∈ ℕ → ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9673, 74, 66, 89, 95offval2 7429 . . . . . 6 (𝑘 ∈ ℕ → (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥𝑘)) + (𝑥𝑘))))
9771, 96eqtr4d 2862 . . . . 5 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
98 oveq1 7166 . . . . . . 7 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) = ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)))
9998oveq1d 7174 . . . . . 6 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
10099eqcomd 2830 . . . . 5 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
10197, 100sylan9eq 2879 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
102 cnelprrecn 10633 . . . . . 6 ℂ ∈ {ℝ, ℂ}
103102a1i 11 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → ℂ ∈ {ℝ, ℂ})
10466fmpttd 6882 . . . . . 6 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥𝑘)):ℂ⟶ℂ)
105104adantr 483 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)):ℂ⟶ℂ)
106 f1oi 6655 . . . . . 6 ( I ↾ ℂ):ℂ–1-1-onto→ℂ
107 f1of 6618 . . . . . 6 (( I ↾ ℂ):ℂ–1-1-onto→ℂ → ( I ↾ ℂ):ℂ⟶ℂ)
108106, 107mp1i 13 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → ( I ↾ ℂ):ℂ⟶ℂ)
109 simpr 487 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
110109dmeqd 5777 . . . . . 6 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = dom (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
11178fmpttd 6882 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))):ℂ⟶ℂ)
112111adantr 483 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))):ℂ⟶ℂ)
113112fdmd 6526 . . . . . 6 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) = ℂ)
114110, 113eqtrd 2859 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = ℂ)
115 1ex 10640 . . . . . . . . 9 1 ∈ V
116115fconst 6568 . . . . . . . 8 (ℂ × {1}):ℂ⟶{1}
11752feq1i 6508 . . . . . . . 8 ((ℂ D ( I ↾ ℂ)):ℂ⟶{1} ↔ (ℂ × {1}):ℂ⟶{1})
118116, 117mpbir 233 . . . . . . 7 (ℂ D ( I ↾ ℂ)):ℂ⟶{1}
119118fdmi 6527 . . . . . 6 dom (ℂ D ( I ↾ ℂ)) = ℂ
120119a1i 11 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D ( I ↾ ℂ)) = ℂ)
121103, 105, 108, 114, 120dvmulf 24543 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
12273, 66, 79, 92, 81offval2 7429 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
123 expp1 13439 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
12463, 64, 123syl2anr 598 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
125124mpteq2dva 5164 . . . . . . 7 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
126122, 125eqtr4d 2862 . . . . . 6 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
127126oveq2d 7175 . . . . 5 (𝑘 ∈ ℕ → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
128127adantr 483 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
129101, 121, 1283eqtr2rd 2866 . . 3 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))))
130129ex 415 . 2 (𝑘 ∈ ℕ → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))))
1319, 18, 27, 36, 54, 130nnind 11659 1 (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  {csn 4570  {cpr 4572  cmpt 5149   I cid 5462   × cxp 5556  dom cdm 5558  cres 5560  wf 6354  1-1-ontowf1o 6357  (class class class)co 7159  f cof 7410  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873  cn 11641  0cn0 11900  cexp 13432   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvexp2  24554  dvexp3  24578  taylthlem2  24965  advlogexp  25241  logdivsum  26112  log2sumbnd  26123  dvasin  34982  areacirclem1  34986  itgpowd  39827  lhe4.4ex1a  40667  dvsinexp  42201  dvxpaek  42231
  Copyright terms: Public domain W3C validator