MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1lem Structured version   Visualization version   GIF version

Theorem dvferm1lem 23728
Description: Lemma for dvferm 23732. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm1.r (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm1.z (𝜑 → 0 < ((ℝ D 𝐹)‘𝑈))
dvferm1.t (𝜑𝑇 ∈ ℝ+)
dvferm1.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
dvferm1.x 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
Assertion
Ref Expression
dvferm1lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm1lem
StepHypRef Expression
1 dvferm.a . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
2 dvferm.b . . . . . . . . 9 (𝜑𝑋 ⊆ ℝ)
3 dvfre 23695 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
41, 2, 3syl2anc 692 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
5 dvferm.d . . . . . . . 8 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
64, 5ffvelrnd 6346 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
76recnd 10053 . . . . . 6 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
87subidd 10365 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) = 0)
9 dvferm.u . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (𝐴(,)𝐵))
10 ne0i 3913 . . . . . . . . . . . . . 14 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
11 ndmioo 12187 . . . . . . . . . . . . . . 15 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
1211necon1ai 2818 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
139, 10, 123syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1413simpld 475 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
15 eliooord 12218 . . . . . . . . . . . . . . 15 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
169, 15syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
1716simpld 475 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝑈)
18 ioossre 12220 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ⊆ ℝ
1918, 9sseldi 3593 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ)
2019rexrd 10074 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℝ*)
21 xrltle 11967 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝑈 ∈ ℝ*) → (𝐴 < 𝑈𝐴𝑈))
2214, 20, 21syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝑈𝐴𝑈))
2317, 22mpd 15 . . . . . . . . . . . 12 (𝜑𝐴𝑈)
24 iooss1 12195 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐴𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
2514, 23, 24syl2anc 692 . . . . . . . . . . 11 (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
26 dvferm.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
2725, 26sstrd 3605 . . . . . . . . . 10 (𝜑 → (𝑈(,)𝐵) ⊆ 𝑋)
28 dvferm1.x . . . . . . . . . . . 12 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
2913simprd 479 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ*)
30 dvferm1.t . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ+)
3130rpred 11857 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
3219, 31readdcld 10054 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 + 𝑇) ∈ ℝ)
3332rexrd 10074 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈 + 𝑇) ∈ ℝ*)
3429, 33ifcld 4122 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ*)
35 mnfxr 10081 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → -∞ ∈ ℝ*)
37 mnflt 11942 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ ℝ → -∞ < 𝑈)
3819, 37syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → -∞ < 𝑈)
3916simprd 479 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 < 𝐵)
4036, 20, 29, 38, 39xrlttrd 11975 . . . . . . . . . . . . . . . 16 (𝜑 → -∞ < 𝐵)
41 mnflt 11942 . . . . . . . . . . . . . . . . 17 ((𝑈 + 𝑇) ∈ ℝ → -∞ < (𝑈 + 𝑇))
4232, 41syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → -∞ < (𝑈 + 𝑇))
43 breq2 4648 . . . . . . . . . . . . . . . . 17 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < 𝐵 ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
44 breq2 4648 . . . . . . . . . . . . . . . . 17 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < (𝑈 + 𝑇) ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
4543, 44ifboth 4115 . . . . . . . . . . . . . . . 16 ((-∞ < 𝐵 ∧ -∞ < (𝑈 + 𝑇)) → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
4640, 42, 45syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
47 xrmin2 11994 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
4829, 33, 47syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
49 xrre 11985 . . . . . . . . . . . . . . 15 (((if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ) ∧ (-∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
5034, 32, 46, 48, 49syl22anc 1325 . . . . . . . . . . . . . 14 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
5119, 50readdcld 10054 . . . . . . . . . . . . 13 (𝜑 → (𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) ∈ ℝ)
5251rehalfcld 11264 . . . . . . . . . . . 12 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) ∈ ℝ)
5328, 52syl5eqel 2703 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
5419, 30ltaddrpd 11890 . . . . . . . . . . . . . 14 (𝜑𝑈 < (𝑈 + 𝑇))
55 breq2 4648 . . . . . . . . . . . . . . 15 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < 𝐵𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
56 breq2 4648 . . . . . . . . . . . . . . 15 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < (𝑈 + 𝑇) ↔ 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5755, 56ifboth 4115 . . . . . . . . . . . . . 14 ((𝑈 < 𝐵𝑈 < (𝑈 + 𝑇)) → 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5839, 54, 57syl2anc 692 . . . . . . . . . . . . 13 (𝜑𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
59 avglt1 11255 . . . . . . . . . . . . . 14 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
6019, 50, 59syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
6158, 60mpbid 222 . . . . . . . . . . . 12 (𝜑𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2))
6261, 28syl6breqr 4686 . . . . . . . . . . 11 (𝜑𝑈 < 𝑆)
6353rexrd 10074 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ*)
64 avglt2 11256 . . . . . . . . . . . . . . 15 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
6519, 50, 64syl2anc 692 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
6658, 65mpbid 222 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
6728, 66syl5eqbr 4679 . . . . . . . . . . . 12 (𝜑𝑆 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
68 xrmin1 11993 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
6929, 33, 68syl2anc 692 . . . . . . . . . . . 12 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
7063, 34, 29, 67, 69xrltletrd 11977 . . . . . . . . . . 11 (𝜑𝑆 < 𝐵)
71 elioo2 12201 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
7220, 29, 71syl2anc 692 . . . . . . . . . . 11 (𝜑 → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
7353, 62, 70, 72mpbir3and 1243 . . . . . . . . . 10 (𝜑𝑆 ∈ (𝑈(,)𝐵))
7427, 73sseldd 3596 . . . . . . . . 9 (𝜑𝑆𝑋)
7519, 62gtned 10157 . . . . . . . . 9 (𝜑𝑆𝑈)
76 eldifsn 4308 . . . . . . . . 9 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
7774, 75, 76sylanbrc 697 . . . . . . . 8 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
78 dvferm1.l . . . . . . . 8 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7919, 53, 62ltled 10170 . . . . . . . . . . 11 (𝜑𝑈𝑆)
8019, 53, 79abssubge0d 14151 . . . . . . . . . 10 (𝜑 → (abs‘(𝑆𝑈)) = (𝑆𝑈))
8153, 50, 32, 67, 48ltletrd 10182 . . . . . . . . . . 11 (𝜑𝑆 < (𝑈 + 𝑇))
8253, 19, 31ltsubadd2d 10610 . . . . . . . . . . 11 (𝜑 → ((𝑆𝑈) < 𝑇𝑆 < (𝑈 + 𝑇)))
8381, 82mpbird 247 . . . . . . . . . 10 (𝜑 → (𝑆𝑈) < 𝑇)
8480, 83eqbrtrd 4666 . . . . . . . . 9 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
8575, 84jca 554 . . . . . . . 8 (𝜑 → (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇))
86 neeq1 2853 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
87 oveq1 6642 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
8887fveq2d 6182 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
8988breq1d 4654 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
9086, 89anbi12d 746 . . . . . . . . . 10 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
91 fveq2 6178 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
9291oveq1d 6650 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
9392, 87oveq12d 6653 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
9493oveq1d 6650 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈)) = ((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈)))
9594fveq2d 6182 . . . . . . . . . . 11 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
9695breq1d 4654 . . . . . . . . . 10 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
9790, 96imbi12d 334 . . . . . . . . 9 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
9897rspcv 3300 . . . . . . . 8 (𝑆 ∈ (𝑋 ∖ {𝑈}) → (∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)) → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
9977, 78, 85, 98syl3c 66 . . . . . . 7 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))
1001, 74ffvelrnd 6346 . . . . . . . . . 10 (𝜑 → (𝐹𝑆) ∈ ℝ)
10126, 9sseldd 3596 . . . . . . . . . . 11 (𝜑𝑈𝑋)
1021, 101ffvelrnd 6346 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
103100, 102resubcld 10443 . . . . . . . . 9 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
10453, 19resubcld 10443 . . . . . . . . . 10 (𝜑 → (𝑆𝑈) ∈ ℝ)
10519, 53posdifd 10599 . . . . . . . . . . 11 (𝜑 → (𝑈 < 𝑆 ↔ 0 < (𝑆𝑈)))
10662, 105mpbid 222 . . . . . . . . . 10 (𝜑 → 0 < (𝑆𝑈))
107104, 106elrpd 11854 . . . . . . . . 9 (𝜑 → (𝑆𝑈) ∈ ℝ+)
108103, 107rerpdivcld 11888 . . . . . . . 8 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
109108, 6, 6absdifltd 14153 . . . . . . 7 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈)))))
11099, 109mpbid 222 . . . . . 6 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈))))
111110simpld 475 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
1128, 111eqbrtrrd 4668 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
113 gt0div 10874 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ (𝑆𝑈) ∈ ℝ ∧ 0 < (𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
114103, 104, 106, 113syl3anc 1324 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
115112, 114mpbird 247 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
116102, 100posdifd 10599 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
117115, 116mpbird 247 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
118 dvferm1.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
119 fveq2 6178 . . . . . 6 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
120119breq1d 4654 . . . . 5 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
121120rspcv 3300 . . . 4 (𝑆 ∈ (𝑈(,)𝐵) → (∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈) → (𝐹𝑆) ≤ (𝐹𝑈)))
12273, 118, 121sylc 65 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
123100, 102lenltd 10168 . . 3 (𝜑 → ((𝐹𝑆) ≤ (𝐹𝑈) ↔ ¬ (𝐹𝑈) < (𝐹𝑆)))
124122, 123mpbid 222 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
125117, 124pm2.65i 185 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  cdif 3564  wss 3567  c0 3907  ifcif 4077  {csn 4168   class class class wbr 4644  dom cdm 5104  wf 5872  cfv 5876  (class class class)co 6635  cr 9920  0cc0 9921   + caddc 9924  -∞cmnf 10057  *cxr 10058   < clt 10059  cle 10060  cmin 10251   / cdiv 10669  2c2 11055  +crp 11817  (,)cioo 12160  abscabs 13955   D cdv 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fi 8302  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-icc 12167  df-fz 12312  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-plusg 15935  df-mulr 15936  df-starv 15937  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-rest 16064  df-topn 16065  df-topgen 16085  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-cncf 22662  df-limc 23611  df-dv 23612
This theorem is referenced by:  dvferm1  23729
  Copyright terms: Public domain W3C validator