MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumle Structured version   Visualization version   GIF version

Theorem dvfsumle 24621
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumle.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvfsumle.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumle.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumle.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumle.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
dvfsumle.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋𝐵)
Assertion
Ref Expression
dvfsumle (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷𝐶))
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem dvfsumle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzofi 13345 . . . 4 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . 3 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumle.x . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
4 dvfsumle.m . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12251 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 eluzelz 12256 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
9 fzval2 12898 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 4208 . . . . . . . . 9 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11eqsstrdi 4024 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3970 . . . . . . 7 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumle.a . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
15 cncff 23504 . . . . . . . . . 10 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
1614, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
17 eqid 2824 . . . . . . . . . 10 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 6877 . . . . . . . . 9 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
1916, 18sylibr 236 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
20 nfcsb1v 3910 . . . . . . . . . 10 𝑥𝑦 / 𝑥𝐴
2120nfel1 2997 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐴 ∈ ℝ
22 csbeq1a 3900 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2900 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝑦 / 𝑥𝐴 ∈ ℝ))
2421, 23rspc 3614 . . . . . . . 8 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → 𝑦 / 𝑥𝐴 ∈ ℝ))
2519, 24mpan9 509 . . . . . . 7 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
2613, 25syldan 593 . . . . . 6 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
2726ralrimiva 3185 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ)
28 fzofzp1 13137 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3889 . . . . . . 7 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2900 . . . . . 6 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℝ))
3130rspccva 3625 . . . . 5 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℝ)
3227, 28, 31syl2an 597 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℝ)
33 elfzofz 13056 . . . . 5 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3889 . . . . . . 7 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2900 . . . . . 6 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑘 / 𝑥𝐴 ∈ ℝ))
3635rspccva 3625 . . . . 5 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℝ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℝ)
3727, 33, 36syl2an 597 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℝ)
3832, 37resubcld 11071 . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℝ)
39 elfzoelz 13041 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
4039adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
4140zred 12090 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
4241recnd 10672 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
43 ax-1cn 10598 . . . . . . 7 1 ∈ ℂ
44 pncan2 10896 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 𝑘) = 1)
4542, 43, 44sylancl 588 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
4645oveq2d 7175 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
473recnd 10672 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
48 peano2re 10816 . . . . . . . 8 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4941, 48syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
5049recnd 10672 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
5147, 50, 42subdid 11099 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
5247mulid1d 10661 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
5346, 51, 523eqtr3d 2867 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
54 eqid 2824 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5554mulcn 23478 . . . . . 6 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
566zred 12090 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
5756adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
588zred 12090 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
5958adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
60 elfzole1 13049 . . . . . . . . . . 11 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
6160adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
6228adantl 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
63 elfzle2 12914 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
6462, 63syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
65 iccss 12807 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
6657, 59, 61, 64, 65syl22anc 836 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
67 iccssre 12821 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
6856, 58, 67syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
6968adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
7066, 69sstrd 3980 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
71 ax-resscn 10597 . . . . . . . 8 ℝ ⊆ ℂ
7270, 71sstrdi 3982 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℂ)
7371a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
74 cncfmptc 23522 . . . . . . 7 ((𝑋 ∈ ℝ ∧ (𝑘[,](𝑘 + 1)) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
753, 72, 73, 74syl3anc 1367 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑋) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
76 cncfmptid 23523 . . . . . . 7 (((𝑘[,](𝑘 + 1)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
7770, 71, 76sylancl 588 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
78 remulcl 10625 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 · 𝑦) ∈ ℝ)
7954, 55, 75, 77, 71, 78cncfmpt2ss 23526 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ (𝑋 · 𝑦)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
80 reelprrecn 10632 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
8180a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
8257rexrd 10694 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
83 iooss1 12776 . . . . . . . . . . 11 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
8482, 61, 83syl2anc 586 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
8559rexrd 10694 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
86 iooss2 12777 . . . . . . . . . . 11 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
8785, 64, 86syl2anc 586 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
8884, 87sstrd 3980 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
89 ioossicc 12825 . . . . . . . . . 10 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
9069, 71sstrdi 3982 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
9189, 90sstrid 3981 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
9288, 91sstrd 3980 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℂ)
9392sselda 3970 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑦 ∈ ℂ)
94 1cnd 10639 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 1 ∈ ℂ)
9573sselda 3970 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
96 1cnd 10639 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
9781dvmptid 24557 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
98 ioossre 12801 . . . . . . . . 9 (𝑘(,)(𝑘 + 1)) ⊆ ℝ
9998a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ ℝ)
10054tgioo2 23414 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
101 iooretop 23377 . . . . . . . . 9 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
102101a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
10381, 95, 96, 97, 99, 100, 54, 102dvmptres 24563 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 1))
10481, 93, 94, 103, 47dvmptcmul 24564 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)))
10552mpteq2dv 5165 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 1)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋))
106104, 105eqtrd 2859 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋 · 𝑦))) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑋))
107 nfcv 2980 . . . . . . 7 𝑦𝐴
108107, 20, 22cbvmpt 5170 . . . . . 6 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) = (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴)
10966resmptd 5911 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴))
11014adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
111 rescncf 23508 . . . . . . . 8 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ)))
11266, 110, 111sylc 65 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
113109, 112eqeltrrd 2917 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
114108, 113eqeltrrid 2921 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑦 ∈ (𝑘[,](𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑘[,](𝑘 + 1))–cn→ℝ))
11516adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
116115, 18sylibr 236 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
11789sseli 3966 . . . . . . . 8 (𝑦 ∈ (𝑀(,)𝑁) → 𝑦 ∈ (𝑀[,]𝑁))
11824impcom 410 . . . . . . . 8 ((∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ∧ 𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
119116, 117, 118syl2an 597 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℝ)
120119recnd 10672 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
12189sseli 3966 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
12216fvmptelrn 6880 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
123122adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
124121, 123sylan2 594 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
125124fmpttd 6882 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
126 ioossre 12801 . . . . . . . . . 10 (𝑀(,)𝑁) ⊆ ℝ
127 dvfre 24551 . . . . . . . . . 10 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
128125, 126, 127sylancl 588 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
129 dvfsumle.b . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
130129adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
131130dmeqd 5777 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
132 dvfsumle.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
133132adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
134133ralrimiva 3185 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉)
135 dmmptg 6099 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵𝑉 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
136134, 135syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
137131, 136eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
138130, 137feq12d 6505 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
139128, 138mpbid 234 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
140 eqid 2824 . . . . . . . . 9 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)
141140fmpt 6877 . . . . . . . 8 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
142139, 141sylibr 236 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ)
143 nfcsb1v 3910 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐵
144143nfel1 2997 . . . . . . . 8 𝑥𝑦 / 𝑥𝐵 ∈ ℝ
145 csbeq1a 3900 . . . . . . . . 9 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
146145eleq1d 2900 . . . . . . . 8 (𝑥 = 𝑦 → (𝐵 ∈ ℝ ↔ 𝑦 / 𝑥𝐵 ∈ ℝ))
147144, 146rspc 3614 . . . . . . 7 (𝑦 ∈ (𝑀(,)𝑁) → (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ → 𝑦 / 𝑥𝐵 ∈ ℝ))
148142, 147mpan9 509 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑀(,)𝑁)) → 𝑦 / 𝑥𝐵 ∈ ℝ)
149107, 20, 22cbvmpt 5170 . . . . . . . 8 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴)
150149oveq2i 7170 . . . . . . 7 (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴))
151 nfcv 2980 . . . . . . . 8 𝑦𝐵
152151, 143, 145cbvmpt 5170 . . . . . . 7 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐵)
153130, 150, 1523eqtr3g 2882 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑀(,)𝑁) ↦ 𝑦 / 𝑥𝐵))
15481, 120, 148, 153, 88, 100, 54, 102dvmptres 24563 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑘(,)(𝑘 + 1)) ↦ 𝑦 / 𝑥𝐵))
155 dvfsumle.l . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋𝐵)
156155anassrs 470 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋𝐵)
157156ralrimiva 3185 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋𝐵)
158 nfcv 2980 . . . . . . . 8 𝑥𝑋
159 nfcv 2980 . . . . . . . 8 𝑥
160158, 159, 143nfbr 5116 . . . . . . 7 𝑥 𝑋𝑦 / 𝑥𝐵
161145breq2d 5081 . . . . . . 7 (𝑥 = 𝑦 → (𝑋𝐵𝑋𝑦 / 𝑥𝐵))
162160, 161rspc 3614 . . . . . 6 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))𝑋𝐵𝑋𝑦 / 𝑥𝐵))
163157, 162mpan9 509 . . . . 5 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → 𝑋𝑦 / 𝑥𝐵)
16441rexrd 10694 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
16549rexrd 10694 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
16641lep1d 11574 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
167 lbicc2 12855 . . . . . 6 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
168164, 165, 166, 167syl3anc 1367 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
169 ubicc2 12856 . . . . . 6 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
170164, 165, 166, 169syl3anc 1367 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
171 oveq2 7167 . . . . 5 (𝑦 = 𝑘 → (𝑋 · 𝑦) = (𝑋 · 𝑘))
172 oveq2 7167 . . . . 5 (𝑦 = (𝑘 + 1) → (𝑋 · 𝑦) = (𝑋 · (𝑘 + 1)))
17341, 49, 79, 106, 114, 154, 163, 168, 170, 166, 171, 34, 172, 29dvle 24607 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) ≤ ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
17453, 173eqbrtrrd 5093 . . 3 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ≤ ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
1752, 3, 38, 174fsumle 15157 . 2 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))
176 vex 3500 . . . . 5 𝑦 ∈ V
177176a1i 11 . . . 4 (𝑦 = 𝑀𝑦 ∈ V)
178 eqeq2 2836 . . . . . 6 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
179178biimpa 479 . . . . 5 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
180 dvfsumle.c . . . . 5 (𝑥 = 𝑀𝐴 = 𝐶)
181179, 180syl 17 . . . 4 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
182177, 181csbied 3922 . . 3 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
183176a1i 11 . . . 4 (𝑦 = 𝑁𝑦 ∈ V)
184 eqeq2 2836 . . . . . 6 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
185184biimpa 479 . . . . 5 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
186 dvfsumle.d . . . . 5 (𝑥 = 𝑁𝐴 = 𝐷)
187185, 186syl 17 . . . 4 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
188183, 187csbied 3922 . . 3 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
18926recnd 10672 . . 3 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
19034, 29, 182, 188, 4, 189telfsumo2 15161 . 2 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
191175, 190breqtrd 5095 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  csb 3886  cin 3938  wss 3939  {cpr 4572   class class class wbr 5069  cmpt 5149  dom cdm 5558  ran crn 5559  cres 5560  wf 6354  cfv 6358  (class class class)co 7159  Fincfn 8512  cc 10538  cr 10539  1c1 10541   + caddc 10543   · cmul 10545  *cxr 10677  cle 10679  cmin 10873  cz 11984  cuz 12246  (,)cioo 12741  [,]cicc 12744  ...cfz 12895  ..^cfzo 13036  Σcsu 15045  TopOpenctopn 16698  topGenctg 16714  fldccnfld 20548  cnccncf 23487   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvfsumge  24622
  Copyright terms: Public domain W3C validator