Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem1 Structured version   Visualization version   GIF version

Theorem dvfsumlem1 23693
 Description: Lemma for dvfsumrlim 23698. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem1
StepHypRef Expression
1 dvfsum.s . . . . . . . . . 10 𝑆 = (𝑇(,)+∞)
2 ioossre 12177 . . . . . . . . . 10 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3614 . . . . . . . . 9 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . . 9 (𝜑𝑌𝑆)
53, 4sseldi 3581 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . 10 (𝜑𝑋𝑆)
73, 6sseldi 3581 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87flcld 12539 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℤ)
9 reflcl 12537 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
107, 9syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ∈ ℝ)
11 flle 12540 . . . . . . . . . 10 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
127, 11syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
13 dvfsumlem1.4 . . . . . . . . 9 (𝜑𝑋𝑌)
1410, 7, 5, 12, 13letrd 10138 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑌)
15 flbi 12557 . . . . . . . . 9 ((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ ((⌊‘𝑋) ≤ 𝑌𝑌 < ((⌊‘𝑋) + 1))))
1615baibd 947 . . . . . . . 8 (((𝑌 ∈ ℝ ∧ (⌊‘𝑋) ∈ ℤ) ∧ (⌊‘𝑋) ≤ 𝑌) → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
175, 8, 14, 16syl21anc 1322 . . . . . . 7 (𝜑 → ((⌊‘𝑌) = (⌊‘𝑋) ↔ 𝑌 < ((⌊‘𝑋) + 1)))
1817biimpar 502 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = (⌊‘𝑋))
1918oveq2d 6620 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − (⌊‘𝑋)))
2019oveq1d 6619 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵))
2118oveq2d 6620 . . . . . 6 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...(⌊‘𝑋)))
2221sumeq1d 14365 . . . . 5 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
2322oveq1d 6619 . . . 4 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴))
2420, 23oveq12d 6622 . . 3 ((𝜑𝑌 < ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
25 simpr 477 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 = ((⌊‘𝑋) + 1))
267adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑋 ∈ ℝ)
2726flcld 12539 . . . . . . . . . . . 12 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑋) ∈ ℤ)
2827peano2zd 11429 . . . . . . . . . . 11 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((⌊‘𝑋) + 1) ∈ ℤ)
2925, 28eqeltrd 2698 . . . . . . . . . 10 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 ∈ ℤ)
30 flid 12549 . . . . . . . . . 10 (𝑌 ∈ ℤ → (⌊‘𝑌) = 𝑌)
3129, 30syl 17 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = 𝑌)
3231, 25eqtrd 2655 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (⌊‘𝑌) = ((⌊‘𝑋) + 1))
3332oveq2d 6620 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑌 − (⌊‘𝑌)) = (𝑌 − ((⌊‘𝑋) + 1)))
3433oveq1d 6619 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
355recnd 10012 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
3610recnd 10012 . . . . . . . . . 10 (𝜑 → (⌊‘𝑋) ∈ ℂ)
3735, 36subcld 10336 . . . . . . . . 9 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
38 1cnd 10000 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
393a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℝ)
40 dvfsum.a . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
41 dvfsum.b1 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝐵𝑉)
42 dvfsum.b3 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
4339, 40, 41, 42dvmptrecl 23691 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
4443recnd 10012 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
4544ralrimiva 2960 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
46 nfcsb1v 3530 . . . . . . . . . . . 12 𝑥𝑌 / 𝑥𝐵
4746nfel1 2775 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐵 ∈ ℂ
48 csbeq1a 3523 . . . . . . . . . . . 12 (𝑥 = 𝑌𝐵 = 𝑌 / 𝑥𝐵)
4948eleq1d 2683 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝐵 ∈ ℂ ↔ 𝑌 / 𝑥𝐵 ∈ ℂ))
5047, 49rspc 3289 . . . . . . . . . 10 (𝑌𝑆 → (∀𝑥𝑆 𝐵 ∈ ℂ → 𝑌 / 𝑥𝐵 ∈ ℂ))
514, 45, 50sylc 65 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
5237, 38, 51subdird 10431 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
5335, 36, 38subsub4d 10367 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) = (𝑌 − ((⌊‘𝑋) + 1)))
5453oveq1d 6619 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵))
5551mulid2d 10002 . . . . . . . . 9 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
5655oveq2d 6620 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5752, 54, 563eqtr3d 2663 . . . . . . 7 (𝜑 → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5857adantr 481 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − ((⌊‘𝑋) + 1)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
5934, 58eqtrd 2655 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
60 dvfsum.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
618peano2zd 11429 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℤ)
6260zred 11426 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
63 peano2rem 10292 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℝ)
65 dvfsum.d . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ)
66 dvfsum.md . . . . . . . . . . . . . . . 16 (𝜑𝑀 ≤ (𝐷 + 1))
67 1red 9999 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
6862, 67, 65lesubaddd 10568 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 − 1) ≤ 𝐷𝑀 ≤ (𝐷 + 1)))
6966, 68mpbird 247 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ≤ 𝐷)
70 dvfsumlem1.3 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑋)
7164, 65, 7, 69, 70letrd 10138 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ≤ 𝑋)
72 peano2zm 11364 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7360, 72syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 − 1) ∈ ℤ)
74 flge 12546 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
757, 73, 74syl2anc 692 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 − 1) ≤ 𝑋 ↔ (𝑀 − 1) ≤ (⌊‘𝑋)))
7671, 75mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝑀 − 1) ≤ (⌊‘𝑋))
7762, 67, 10lesubaddd 10568 . . . . . . . . . . . . 13 (𝜑 → ((𝑀 − 1) ≤ (⌊‘𝑋) ↔ 𝑀 ≤ ((⌊‘𝑋) + 1)))
7876, 77mpbid 222 . . . . . . . . . . . 12 (𝜑𝑀 ≤ ((⌊‘𝑋) + 1))
79 eluz2 11637 . . . . . . . . . . . 12 (((⌊‘𝑋) + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ ((⌊‘𝑋) + 1) ∈ ℤ ∧ 𝑀 ≤ ((⌊‘𝑋) + 1)))
8060, 61, 78, 79syl3anbrc 1244 . . . . . . . . . . 11 (𝜑 → ((⌊‘𝑋) + 1) ∈ (ℤ𝑀))
81 dvfsum.b2 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
8281recnd 10012 . . . . . . . . . . . . 13 ((𝜑𝑥𝑍) → 𝐵 ∈ ℂ)
8382ralrimiva 2960 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℂ)
84 elfzuz 12280 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘 ∈ (ℤ𝑀))
85 dvfsum.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
8684, 85syl6eleqr 2709 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...((⌊‘𝑋) + 1)) → 𝑘𝑍)
87 dvfsum.c . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝐵 = 𝐶)
8887eleq1d 2683 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
8988rspccva 3294 . . . . . . . . . . . 12 ((∀𝑥𝑍 𝐵 ∈ ℂ ∧ 𝑘𝑍) → 𝐶 ∈ ℂ)
9083, 86, 89syl2an 494 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))) → 𝐶 ∈ ℂ)
91 eqvisset 3197 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) ∈ V)
92 eqeq2 2632 . . . . . . . . . . . . . . 15 (𝑘 = ((⌊‘𝑋) + 1) → (𝑥 = 𝑘𝑥 = ((⌊‘𝑋) + 1)))
9392biimpar 502 . . . . . . . . . . . . . 14 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝑥 = 𝑘)
9493, 87syl 17 . . . . . . . . . . . . 13 ((𝑘 = ((⌊‘𝑋) + 1) ∧ 𝑥 = ((⌊‘𝑋) + 1)) → 𝐵 = 𝐶)
9591, 94csbied 3541 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑋) + 1) → ((⌊‘𝑋) + 1) / 𝑥𝐵 = 𝐶)
9695eqcomd 2627 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑋) + 1) → 𝐶 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
9780, 90, 96fsumm1 14410 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
98 ax-1cn 9938 . . . . . . . . . . . . . 14 1 ∈ ℂ
99 pncan 10231 . . . . . . . . . . . . . 14 (((⌊‘𝑋) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
10036, 98, 99sylancl 693 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘𝑋) + 1) − 1) = (⌊‘𝑋))
101100oveq2d 6620 . . . . . . . . . . . 12 (𝜑 → (𝑀...(((⌊‘𝑋) + 1) − 1)) = (𝑀...(⌊‘𝑋)))
102101sumeq1d 14365 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
103102oveq1d 6619 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (𝑀...(((⌊‘𝑋) + 1) − 1))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10497, 103eqtrd 2655 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
105104adantr 481 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
10632oveq2d 6620 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (𝑀...(⌊‘𝑌)) = (𝑀...((⌊‘𝑋) + 1)))
107106sumeq1d 14365 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = Σ𝑘 ∈ (𝑀...((⌊‘𝑋) + 1))𝐶)
10825csbeq1d 3521 . . . . . . . . 9 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
109108oveq2d 6620 . . . . . . . 8 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + ((⌊‘𝑋) + 1) / 𝑥𝐵))
110105, 107, 1093eqtr4d 2665 . . . . . . 7 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵))
111110oveq1d 6619 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
112 fzfid 12712 . . . . . . . . 9 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
113 elfzuz 12280 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
114113, 85syl6eleqr 2709 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
11583, 114, 89syl2an 494 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℂ)
116112, 115fsumcl 14397 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
11740recnd 10012 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
118117ralrimiva 2960 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℂ)
119 nfcsb1v 3530 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐴
120119nfel1 2775 . . . . . . . . . 10 𝑥𝑌 / 𝑥𝐴 ∈ ℂ
121 csbeq1a 3523 . . . . . . . . . . 11 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
122121eleq1d 2683 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐴 ∈ ℂ ↔ 𝑌 / 𝑥𝐴 ∈ ℂ))
123120, 122rspc 3289 . . . . . . . . 9 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℂ → 𝑌 / 𝑥𝐴 ∈ ℂ))
1244, 118, 123sylc 65 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
125116, 51, 124addsubd 10357 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
126125adantr 481 . . . . . 6 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 + 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
127111, 126eqtrd 2655 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵))
12859, 127oveq12d 6622 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)))
12937, 51mulcld 10004 . . . . . 6 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
130129adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
13151adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → 𝑌 / 𝑥𝐵 ∈ ℂ)
132116, 124subcld 10336 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
133132adantr 481 . . . . 5 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
134130, 131, 133nppcan3d 10363 . . . 4 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) + ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴) + 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
135128, 134eqtrd 2655 . . 3 ((𝜑𝑌 = ((⌊‘𝑋) + 1)) → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
136 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
137 peano2re 10153 . . . . . 6 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
13810, 137syl 17 . . . . 5 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
1395, 138leloed 10124 . . . 4 (𝜑 → (𝑌 ≤ ((⌊‘𝑋) + 1) ↔ (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1))))
140136, 139mpbid 222 . . 3 (𝜑 → (𝑌 < ((⌊‘𝑋) + 1) ∨ 𝑌 = ((⌊‘𝑋) + 1)))
14124, 135, 140mpjaodan 826 . 2 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
142 ovex 6632 . . 3 (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V
143 nfcv 2761 . . . 4 𝑥𝑌
144 nfcv 2761 . . . . . 6 𝑥(𝑌 − (⌊‘𝑌))
145 nfcv 2761 . . . . . 6 𝑥 ·
146144, 145, 46nfov 6630 . . . . 5 𝑥((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)
147 nfcv 2761 . . . . 5 𝑥 +
148 nfcv 2761 . . . . . 6 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
149 nfcv 2761 . . . . . 6 𝑥
150148, 149, 119nfov 6630 . . . . 5 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
151146, 147, 150nfov 6630 . . . 4 𝑥(((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
152 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
153 fveq2 6148 . . . . . . 7 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
154152, 153oveq12d 6622 . . . . . 6 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
155154, 48oveq12d 6622 . . . . 5 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
156153oveq2d 6620 . . . . . . 7 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
157156sumeq1d 14365 . . . . . 6 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
158157, 121oveq12d 6622 . . . . 5 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
159155, 158oveq12d 6622 . . . 4 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
160 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
161143, 151, 159, 160fvmptf 6257 . . 3 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ V) → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
1624, 142, 161sylancl 693 . 2 (𝜑 → (𝐻𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
163129, 124, 116subadd23d 10358 . 2 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑌 / 𝑥𝐴)))
164141, 162, 1633eqtr4d 2665 1 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  Vcvv 3186  ⦋csb 3514   ⊆ wss 3555   class class class wbr 4613   ↦ cmpt 4673  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879  1c1 9881   + caddc 9883   · cmul 9885  +∞cpnf 10015  ℝ*cxr 10017   < clt 10018   ≤ cle 10019   − cmin 10210  ℤcz 11321  ℤ≥cuz 11631  (,)cioo 12117  ...cfz 12268  ⌊cfl 12531  Σcsu 14350   D cdv 23533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-cncf 22589  df-limc 23536  df-dv 23537 This theorem is referenced by:  dvfsumlem2  23694
 Copyright terms: Public domain W3C validator