MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem3 Structured version   Visualization version   GIF version

Theorem dvfsumlem3 24619
Description: Lemma for dvfsumrlim 24622. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
Assertion
Ref Expression
dvfsumlem3 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem3
Dummy variables 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 12792 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 4000 . . 3 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . 3 (𝜑𝑌𝑆)
53, 4sseldi 3964 . 2 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . 4 (𝜑𝑋𝑆)
73, 6sseldi 3964 . . 3 (𝜑𝑋 ∈ ℝ)
8 reflcl 13160 . . 3 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
9 peano2re 10807 . . 3 ((⌊‘𝑋) ∈ ℝ → ((⌊‘𝑋) + 1) ∈ ℝ)
107, 8, 93syl 18 . 2 (𝜑 → ((⌊‘𝑋) + 1) ∈ ℝ)
11 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
1312adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ∈ ℤ)
14 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
1514adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷 ∈ ℝ)
16 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
1716adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑀 ≤ (𝐷 + 1))
18 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
1918adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑇 ∈ ℝ)
20 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
2120adantlr 713 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
22 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
2322adantlr 713 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑆) → 𝐵𝑉)
24 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
2524adantlr 713 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
26 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
2726adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
28 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
29 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
3029adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑈 ∈ ℝ*)
31 dvfsum.l . . . 4 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
32313adant1r 1173 . . 3 (((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
33 dvfsum.h . . 3 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
346adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑆)
354adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑆)
36 dvfsumlem1.3 . . . 4 (𝜑𝐷𝑋)
3736adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝐷𝑋)
38 dvfsumlem1.4 . . . 4 (𝜑𝑋𝑌)
3938adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑋𝑌)
40 dvfsumlem1.5 . . . 4 (𝜑𝑌𝑈)
4140adantr 483 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌𝑈)
42 simpr 487 . . 3 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → 𝑌 ≤ ((⌊‘𝑋) + 1))
431, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 30, 32, 33, 34, 35, 37, 39, 41, 42dvfsumlem2 24618 . 2 ((𝜑𝑌 ≤ ((⌊‘𝑋) + 1)) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
443a1i 11 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℝ)
4544sselda 3966 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
46 reflcl 13160 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (⌊‘𝑥) ∈ ℝ)
4845, 47resubcld 11062 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 − (⌊‘𝑥)) ∈ ℝ)
4944, 20, 22, 26dvmptrecl 24615 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
5048, 49remulcld 10665 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑥 − (⌊‘𝑥)) · 𝐵) ∈ ℝ)
51 fzfid 13335 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑀...(⌊‘𝑥)) ∈ Fin)
5224ralrimiva 3182 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5352adantr 483 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → ∀𝑥𝑍 𝐵 ∈ ℝ)
54 elfzuz 12898 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘 ∈ (ℤ𝑀))
5554, 11eleqtrrdi 2924 . . . . . . . . . . 11 (𝑘 ∈ (𝑀...(⌊‘𝑥)) → 𝑘𝑍)
5628eleq1d 2897 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
5756rspccva 3621 . . . . . . . . . . 11 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
5853, 55, 57syl2an 597 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑘 ∈ (𝑀...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
5951, 58fsumrecl 15085 . . . . . . . . 9 ((𝜑𝑥𝑆) → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 ∈ ℝ)
6059, 20resubcld 11062 . . . . . . . 8 ((𝜑𝑥𝑆) → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ ℝ)
6150, 60readdcld 10664 . . . . . . 7 ((𝜑𝑥𝑆) → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) ∈ ℝ)
6261, 33fmptd 6872 . . . . . 6 (𝜑𝐻:𝑆⟶ℝ)
6362adantr 483 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐻:𝑆⟶ℝ)
644adantr 483 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑆)
6563, 64ffvelrnd 6846 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ∈ ℝ)
665adantr 483 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ)
67 reflcl 13160 . . . . . . . 8 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
6866, 67syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ)
6918adantr 483 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ)
707adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ∈ ℝ)
7170, 8, 93syl 18 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ)
726, 1eleqtrdi 2923 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
7318rexrd 10685 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ*)
74 elioopnf 12825 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7573, 74syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
7672, 75mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
7776simprd 498 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
78 fllep1 13165 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
797, 78syl 17 . . . . . . . . . 10 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
8018, 7, 10, 77, 79ltletrd 10794 . . . . . . . . 9 (𝜑𝑇 < ((⌊‘𝑋) + 1))
8180adantr 483 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < ((⌊‘𝑋) + 1))
82 simpr 487 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑌)
8370flcld 13162 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑋) ∈ ℤ)
8483peano2zd 12084 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℤ)
85 flge 13169 . . . . . . . . . 10 ((𝑌 ∈ ℝ ∧ ((⌊‘𝑋) + 1) ∈ ℤ) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8666, 84, 85syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (((⌊‘𝑋) + 1) ≤ 𝑌 ↔ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
8782, 86mpbid 234 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌))
8869, 71, 68, 81, 87ltletrd 10794 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 < (⌊‘𝑌))
8973adantr 483 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑇 ∈ ℝ*)
90 elioopnf 12825 . . . . . . . 8 (𝑇 ∈ ℝ* → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9189, 90syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑌) ∈ (𝑇(,)+∞) ↔ ((⌊‘𝑌) ∈ ℝ ∧ 𝑇 < (⌊‘𝑌))))
9268, 88, 91mpbir2and 711 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (𝑇(,)+∞))
9392, 1eleqtrrdi 2924 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ 𝑆)
9463, 93ffvelrnd 6846 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ∈ ℝ)
956adantr 483 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋𝑆)
9663, 95ffvelrnd 6846 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑋) ∈ ℝ)
9712adantr 483 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ∈ ℤ)
9814adantr 483 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ∈ ℝ)
9916adantr 483 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑀 ≤ (𝐷 + 1))
10020adantlr 713 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10122adantlr 713 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑆) → 𝐵𝑉)
10224adantlr 713 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
10326adantr 483 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
10429adantr 483 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑈 ∈ ℝ*)
105313adant1r 1173 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
10636adantr 483 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷𝑋)
10770, 78syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 ≤ ((⌊‘𝑋) + 1))
10898, 70, 71, 106, 107letrd 10791 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ ((⌊‘𝑋) + 1))
10998, 71, 68, 108, 87letrd 10791 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝐷 ≤ (⌊‘𝑌))
110 flle 13163 . . . . . . 7 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
11166, 110syl 17 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑌)
11240adantr 483 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌𝑈)
113 fllep1 13165 . . . . . . . 8 (𝑌 ∈ ℝ → 𝑌 ≤ ((⌊‘𝑌) + 1))
11466, 113syl 17 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘𝑌) + 1))
115 flidm 13173 . . . . . . . . 9 (𝑌 ∈ ℝ → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
11666, 115syl 17 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘(⌊‘𝑌)) = (⌊‘𝑌))
117116oveq1d 7165 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘(⌊‘𝑌)) + 1) = ((⌊‘𝑌) + 1))
118114, 117breqtrrd 5086 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ≤ ((⌊‘(⌊‘𝑌)) + 1))
1191, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 93, 64, 109, 111, 112, 118dvfsumlem2 24618 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)) ∧ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
120119simpld 497 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻‘(⌊‘𝑌)))
121 elioopnf 12825 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12273, 121syl 17 . . . . . . . . 9 (𝜑 → (((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞) ↔ (((⌊‘𝑋) + 1) ∈ ℝ ∧ 𝑇 < ((⌊‘𝑋) + 1))))
12310, 80, 122mpbir2and 711 . . . . . . . 8 (𝜑 → ((⌊‘𝑋) + 1) ∈ (𝑇(,)+∞))
124123, 1eleqtrrdi 2924 . . . . . . 7 (𝜑 → ((⌊‘𝑋) + 1) ∈ 𝑆)
125124adantr 483 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ 𝑆)
12663, 125ffvelrnd 6846 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ∈ ℝ)
12766flcld 13162 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℤ)
128 eluz2 12243 . . . . . . 7 ((⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)) ↔ (((⌊‘𝑋) + 1) ∈ ℤ ∧ (⌊‘𝑌) ∈ ℤ ∧ ((⌊‘𝑋) + 1) ≤ (⌊‘𝑌)))
12984, 127, 87, 128syl3anbrc 1339 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ (ℤ‘((⌊‘𝑋) + 1)))
13063adantr 483 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝐻:𝑆⟶ℝ)
131 elfzelz 12902 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → 𝑚 ∈ ℤ)
132131adantl 484 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℤ)
133132zred 12081 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ ℝ)
13469adantr 483 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ)
13571adantr 483 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ∈ ℝ)
13680ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < ((⌊‘𝑋) + 1))
137 elfzle1 12904 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
138137adantl 484 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
139134, 135, 133, 136, 138ltletrd 10794 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 < 𝑚)
14073ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑇 ∈ ℝ*)
141 elioopnf 12825 . . . . . . . . . 10 (𝑇 ∈ ℝ* → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
142140, 141syl 17 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
143133, 139, 142mpbir2and 711 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 ∈ (𝑇(,)+∞))
144143, 1eleqtrrdi 2924 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚𝑆)
145130, 144ffvelrnd 6846 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → (𝐻𝑚) ∈ ℝ)
14697adantr 483 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ∈ ℤ)
14798adantr 483 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ∈ ℝ)
14816ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑀 ≤ (𝐷 + 1))
14969adantr 483 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ)
150100adantlr 713 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
151101adantlr 713 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑆) → 𝐵𝑉)
152102adantlr 713 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
153103adantr 483 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
154104adantr 483 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑈 ∈ ℝ*)
1551053adant1r 1173 . . . . . . . 8 ((((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
156 elfzelz 12902 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ∈ ℤ)
157156adantl 484 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℤ)
158157zred 12081 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ ℝ)
15971adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ∈ ℝ)
16080ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < ((⌊‘𝑋) + 1))
161 elfzle1 12904 . . . . . . . . . . . 12 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → ((⌊‘𝑋) + 1) ≤ 𝑚)
162161adantl 484 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((⌊‘𝑋) + 1) ≤ 𝑚)
163149, 159, 158, 160, 162ltletrd 10794 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < 𝑚)
164149rexrd 10685 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 ∈ ℝ*)
165164, 141syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 ∈ (𝑇(,)+∞) ↔ (𝑚 ∈ ℝ ∧ 𝑇 < 𝑚)))
166158, 163, 165mpbir2and 711 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ∈ (𝑇(,)+∞))
167166, 1eleqtrrdi 2924 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚𝑆)
168 peano2re 10807 . . . . . . . . . . 11 (𝑚 ∈ ℝ → (𝑚 + 1) ∈ ℝ)
169158, 168syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ)
170158lep1d 11565 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ (𝑚 + 1))
171149, 158, 169, 163, 170ltletrd 10794 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑇 < (𝑚 + 1))
172 elioopnf 12825 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
173164, 172syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ∈ (𝑇(,)+∞) ↔ ((𝑚 + 1) ∈ ℝ ∧ 𝑇 < (𝑚 + 1))))
174169, 171, 173mpbir2and 711 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ (𝑇(,)+∞))
175174, 1eleqtrrdi 2924 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ 𝑆)
176108adantr 483 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷 ≤ ((⌊‘𝑋) + 1))
177147, 159, 158, 176, 162letrd 10791 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝐷𝑚)
178169rexrd 10685 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ∈ ℝ*)
17968rexrd 10685 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ∈ ℝ*)
180179adantr 483 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ*)
181 elfzle2 12905 . . . . . . . . . . 11 (𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1)) → 𝑚 ≤ ((⌊‘𝑌) − 1))
182181adantl 484 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 ≤ ((⌊‘𝑌) − 1))
183 1red 10636 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 1 ∈ ℝ)
18466adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑌 ∈ ℝ)
185184, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ∈ ℝ)
186 leaddsub 11110 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝑌) ∈ ℝ) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
187158, 183, 185, 186syl3anc 1367 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑚 + 1) ≤ (⌊‘𝑌) ↔ 𝑚 ≤ ((⌊‘𝑌) − 1)))
188182, 187mpbird 259 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ (⌊‘𝑌))
18966rexrd 10685 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 ∈ ℝ*)
190179, 189, 104, 111, 112xrletrd 12549 . . . . . . . . . 10 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) ≤ 𝑈)
191190adantr 483 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑌) ≤ 𝑈)
192178, 180, 154, 188, 191xrletrd 12549 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ 𝑈)
193 flid 13172 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → (⌊‘𝑚) = 𝑚)
194157, 193syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (⌊‘𝑚) = 𝑚)
195194eqcomd 2827 . . . . . . . . . 10 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → 𝑚 = (⌊‘𝑚))
196195oveq1d 7165 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) = ((⌊‘𝑚) + 1))
197169, 196eqled 10737 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝑚 + 1) ≤ ((⌊‘𝑚) + 1))
1981, 11, 146, 147, 148, 149, 150, 151, 152, 153, 28, 154, 155, 33, 167, 175, 177, 170, 192, 197dvfsumlem2 24618 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚) ∧ ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)))
199198simpld 497 . . . . . 6 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → (𝐻‘(𝑚 + 1)) ≤ (𝐻𝑚))
200129, 145, 199monoord2 13395 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻‘((⌊‘𝑋) + 1)))
20171rexrd 10685 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ∈ ℝ*)
202201, 179, 104, 87, 190xrletrd 12549 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ 𝑈)
20371leidd 11200 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) ≤ ((⌊‘𝑋) + 1))
2041, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 95, 125, 106, 107, 202, 203dvfsumlem2 24618 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)))
205204simpld 497 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘((⌊‘𝑋) + 1)) ≤ (𝐻𝑋))
20694, 126, 96, 200, 205letrd 10791 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻‘(⌊‘𝑌)) ≤ (𝐻𝑋))
20765, 94, 96, 120, 206letrd 10791 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (𝐻𝑌) ≤ (𝐻𝑋))
208 csbeq1 3885 . . . . . . 7 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
209208eleq1d 2897 . . . . . 6 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
21049ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
211210adantr 483 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑥𝑆 𝐵 ∈ ℝ)
212 nfcsb1v 3906 . . . . . . . . . 10 𝑥𝑚 / 𝑥𝐵
213212nfel1 2994 . . . . . . . . 9 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
214 csbeq1a 3896 . . . . . . . . . 10 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
215214eleq1d 2897 . . . . . . . . 9 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
216213, 215rspc 3610 . . . . . . . 8 (𝑚𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑚 / 𝑥𝐵 ∈ ℝ))
217211, 216mpan9 509 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚𝑆) → 𝑚 / 𝑥𝐵 ∈ ℝ)
218217ralrimiva 3182 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
219209, 218, 95rspcdva 3624 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑋 / 𝑥𝐵 ∈ ℝ)
22096, 219resubcld 11062 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ∈ ℝ)
221 csbeq1 3885 . . . . . . 7 (𝑚 = (⌊‘𝑌) → 𝑚 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
222221eleq1d 2897 . . . . . 6 (𝑚 = (⌊‘𝑌) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ))
223222, 218, 93rspcdva 3624 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → (⌊‘𝑌) / 𝑥𝐵 ∈ ℝ)
22494, 223resubcld 11062 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ∈ ℝ)
225 csbeq1 3885 . . . . . . 7 (𝑚 = 𝑌𝑚 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
226225eleq1d 2897 . . . . . 6 (𝑚 = 𝑌 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
227226, 218, 64rspcdva 3624 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → 𝑌 / 𝑥𝐵 ∈ ℝ)
22865, 227resubcld 11062 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) ∈ ℝ)
229 csbeq1 3885 . . . . . . . 8 (𝑚 = ((⌊‘𝑋) + 1) → 𝑚 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
230229eleq1d 2897 . . . . . . 7 (𝑚 = ((⌊‘𝑋) + 1) → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ))
231230, 218, 125rspcdva 3624 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((⌊‘𝑋) + 1) / 𝑥𝐵 ∈ ℝ)
232126, 231resubcld 11062 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ∈ ℝ)
233204simprd 498 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
234 fveq2 6664 . . . . . . . . . . 11 (𝑦 = 𝑚 → (𝐻𝑦) = (𝐻𝑚))
235 csbeq1 3885 . . . . . . . . . . 11 (𝑦 = 𝑚𝑦 / 𝑥𝐵 = 𝑚 / 𝑥𝐵)
236234, 235oveq12d 7168 . . . . . . . . . 10 (𝑦 = 𝑚 → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
237 eqid 2821 . . . . . . . . . 10 (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵)) = (𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))
238 ovex 7183 . . . . . . . . . 10 ((𝐻𝑦) − 𝑦 / 𝑥𝐵) ∈ V
239236, 237, 238fvmpt3i 6767 . . . . . . . . 9 (𝑚 ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵))
240239elv 3499 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) = ((𝐻𝑚) − 𝑚 / 𝑥𝐵)
241144, 217syldan 593 . . . . . . . . 9 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → 𝑚 / 𝑥𝐵 ∈ ℝ)
242145, 241resubcld 11062 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ∈ ℝ)
243240, 242eqeltrid 2917 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...(⌊‘𝑌))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ∈ ℝ)
244198simprd 498 . . . . . . . 8 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝐻𝑚) − 𝑚 / 𝑥𝐵) ≤ ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
245 ovex 7183 . . . . . . . . 9 (𝑚 + 1) ∈ V
246 fveq2 6664 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → (𝐻𝑦) = (𝐻‘(𝑚 + 1)))
247 csbeq1 3885 . . . . . . . . . . 11 (𝑦 = (𝑚 + 1) → 𝑦 / 𝑥𝐵 = (𝑚 + 1) / 𝑥𝐵)
248246, 247oveq12d 7168 . . . . . . . . . 10 (𝑦 = (𝑚 + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
249248, 237, 238fvmpt3i 6767 . . . . . . . . 9 ((𝑚 + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵))
250245, 249ax-mp 5 . . . . . . . 8 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)) = ((𝐻‘(𝑚 + 1)) − (𝑚 + 1) / 𝑥𝐵)
251244, 240, 2503brtr4g 5092 . . . . . . 7 (((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) ∧ 𝑚 ∈ (((⌊‘𝑋) + 1)...((⌊‘𝑌) − 1))) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘𝑚) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(𝑚 + 1)))
252129, 243, 251monoord 13394 . . . . . 6 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) ≤ ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)))
253 ovex 7183 . . . . . . 7 ((⌊‘𝑋) + 1) ∈ V
254 fveq2 6664 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → (𝐻𝑦) = (𝐻‘((⌊‘𝑋) + 1)))
255 csbeq1 3885 . . . . . . . . 9 (𝑦 = ((⌊‘𝑋) + 1) → 𝑦 / 𝑥𝐵 = ((⌊‘𝑋) + 1) / 𝑥𝐵)
256254, 255oveq12d 7168 . . . . . . . 8 (𝑦 = ((⌊‘𝑋) + 1) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
257256, 237, 238fvmpt3i 6767 . . . . . . 7 (((⌊‘𝑋) + 1) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵))
258253, 257ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘((⌊‘𝑋) + 1)) = ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵)
259 fvex 6677 . . . . . . 7 (⌊‘𝑌) ∈ V
260 fveq2 6664 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → (𝐻𝑦) = (𝐻‘(⌊‘𝑌)))
261 csbeq1 3885 . . . . . . . . 9 (𝑦 = (⌊‘𝑌) → 𝑦 / 𝑥𝐵 = (⌊‘𝑌) / 𝑥𝐵)
262260, 261oveq12d 7168 . . . . . . . 8 (𝑦 = (⌊‘𝑌) → ((𝐻𝑦) − 𝑦 / 𝑥𝐵) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
263262, 237, 238fvmpt3i 6767 . . . . . . 7 ((⌊‘𝑌) ∈ V → ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
264259, 263ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ ((𝐻𝑦) − 𝑦 / 𝑥𝐵))‘(⌊‘𝑌)) = ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵)
265252, 258, 2643brtr3g 5091 . . . . 5 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘((⌊‘𝑋) + 1)) − ((⌊‘𝑋) + 1) / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
266220, 232, 224, 233, 265letrd 10791 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵))
267119simprd 498 . . . 4 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻‘(⌊‘𝑌)) − (⌊‘𝑌) / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
268220, 224, 228, 266, 267letrd 10791 . . 3 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
269207, 268jca 514 . 2 ((𝜑 ∧ ((⌊‘𝑋) + 1) ≤ 𝑌) → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
2705, 10, 43, 269lecasei 10740 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  csb 3882  wss 3935   class class class wbr 5058  cmpt 5138  wf 6345  cfv 6349  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cmin 10864  cz 11975  cuz 12237  (,)cioo 12732  ...cfz 12886  cfl 13154  Σcsu 15036   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by:  dvfsumlem4  24620  dvfsum2  24625
  Copyright terms: Public domain W3C validator