MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem4 Structured version   Visualization version   GIF version

Theorem dvfsumlem4 23713
Description: Lemma for dvfsumrlim 23715. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsumlem4.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumlem4.0 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵)
dvfsumlem4.1 (𝜑𝑋𝑆)
dvfsumlem4.2 (𝜑𝑌𝑆)
dvfsumlem4.3 (𝜑𝐷𝑋)
dvfsumlem4.4 (𝜑𝑋𝑌)
dvfsumlem4.5 (𝜑𝑌𝑈)
Assertion
Ref Expression
dvfsumlem4 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvfsumlem4.2 . . . . 5 (𝜑𝑌𝑆)
2 fzfid 12720 . . . . . . 7 (𝜑 → (𝑀...(⌊‘𝑌)) ∈ Fin)
3 dvfsum.b2 . . . . . . . . 9 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
43ralrimiva 2961 . . . . . . . 8 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
5 elfzuz 12288 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘 ∈ (ℤ𝑀))
6 dvfsum.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
75, 6syl6eleqr 2709 . . . . . . . 8 (𝑘 ∈ (𝑀...(⌊‘𝑌)) → 𝑘𝑍)
8 dvfsum.c . . . . . . . . . 10 (𝑥 = 𝑘𝐵 = 𝐶)
98eleq1d 2683 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
109rspccva 3297 . . . . . . . 8 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
114, 7, 10syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑌))) → 𝐶 ∈ ℝ)
122, 11fsumrecl 14406 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶 ∈ ℝ)
13 dvfsum.a . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
1413ralrimiva 2961 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
15 nfcsb1v 3534 . . . . . . . . 9 𝑥𝑌 / 𝑥𝐴
1615nfel1 2775 . . . . . . . 8 𝑥𝑌 / 𝑥𝐴 ∈ ℝ
17 csbeq1a 3527 . . . . . . . . 9 (𝑥 = 𝑌𝐴 = 𝑌 / 𝑥𝐴)
1817eleq1d 2683 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
1916, 18rspc 3292 . . . . . . 7 (𝑌𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑌 / 𝑥𝐴 ∈ ℝ))
201, 14, 19sylc 65 . . . . . 6 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
2112, 20resubcld 10410 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ)
22 nfcv 2761 . . . . . 6 𝑥𝑌
23 nfcv 2761 . . . . . . 7 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶
24 nfcv 2761 . . . . . . 7 𝑥
2523, 24, 15nfov 6636 . . . . . 6 𝑥𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)
26 fveq2 6153 . . . . . . . . 9 (𝑥 = 𝑌 → (⌊‘𝑥) = (⌊‘𝑌))
2726oveq2d 6626 . . . . . . . 8 (𝑥 = 𝑌 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑌)))
2827sumeq1d 14373 . . . . . . 7 (𝑥 = 𝑌 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶)
2928, 17oveq12d 6628 . . . . . 6 (𝑥 = 𝑌 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
30 dvfsumlem4.g . . . . . 6 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
3122, 25, 29, 30fvmptf 6262 . . . . 5 ((𝑌𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
321, 21, 31syl2anc 692 . . . 4 (𝜑 → (𝐺𝑌) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
33 dvfsumlem4.1 . . . . 5 (𝜑𝑋𝑆)
34 fzfid 12720 . . . . . . 7 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
35 elfzuz 12288 . . . . . . . . 9 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
3635, 6syl6eleqr 2709 . . . . . . . 8 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
374, 36, 10syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
3834, 37fsumrecl 14406 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
39 nfcsb1v 3534 . . . . . . . . 9 𝑥𝑋 / 𝑥𝐴
4039nfel1 2775 . . . . . . . 8 𝑥𝑋 / 𝑥𝐴 ∈ ℝ
41 csbeq1a 3527 . . . . . . . . 9 (𝑥 = 𝑋𝐴 = 𝑋 / 𝑥𝐴)
4241eleq1d 2683 . . . . . . . 8 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
4340, 42rspc 3292 . . . . . . 7 (𝑋𝑆 → (∀𝑥𝑆 𝐴 ∈ ℝ → 𝑋 / 𝑥𝐴 ∈ ℝ))
4433, 14, 43sylc 65 . . . . . 6 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
4538, 44resubcld 10410 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ)
46 nfcv 2761 . . . . . 6 𝑥𝑋
47 nfcv 2761 . . . . . . 7 𝑥Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶
4847, 24, 39nfov 6636 . . . . . 6 𝑥𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)
49 fveq2 6153 . . . . . . . . 9 (𝑥 = 𝑋 → (⌊‘𝑥) = (⌊‘𝑋))
5049oveq2d 6626 . . . . . . . 8 (𝑥 = 𝑋 → (𝑀...(⌊‘𝑥)) = (𝑀...(⌊‘𝑋)))
5150sumeq1d 14373 . . . . . . 7 (𝑥 = 𝑋 → Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 = Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)
5251, 41oveq12d 6628 . . . . . 6 (𝑥 = 𝑋 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5346, 48, 52, 30fvmptf 6262 . . . . 5 ((𝑋𝑆 ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℝ) → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5433, 45, 53syl2anc 692 . . . 4 (𝜑 → (𝐺𝑋) = (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
5532, 54oveq12d 6628 . . 3 (𝜑 → ((𝐺𝑌) − (𝐺𝑋)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
5655fveq2d 6157 . 2 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) = (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
57 dvfsum.s . . . . . . . . . . 11 𝑆 = (𝑇(,)+∞)
58 ioossre 12185 . . . . . . . . . . 11 (𝑇(,)+∞) ⊆ ℝ
5957, 58eqsstri 3619 . . . . . . . . . 10 𝑆 ⊆ ℝ
6059a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℝ)
61 dvfsum.b1 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵𝑉)
62 dvfsum.b3 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
6360, 13, 61, 62dvmptrecl 23708 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6463ralrimiva 2961 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
65 nfv 1840 . . . . . . . 8 𝑚 𝐵 ∈ ℝ
66 nfcsb1v 3534 . . . . . . . . 9 𝑥𝑚 / 𝑥𝐵
6766nfel1 2775 . . . . . . . 8 𝑥𝑚 / 𝑥𝐵 ∈ ℝ
68 csbeq1a 3527 . . . . . . . . 9 (𝑥 = 𝑚𝐵 = 𝑚 / 𝑥𝐵)
6968eleq1d 2683 . . . . . . . 8 (𝑥 = 𝑚 → (𝐵 ∈ ℝ ↔ 𝑚 / 𝑥𝐵 ∈ ℝ))
7065, 67, 69cbvral 3158 . . . . . . 7 (∀𝑥𝑆 𝐵 ∈ ℝ ↔ ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
7164, 70sylib 208 . . . . . 6 (𝜑 → ∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ)
72 csbeq1 3521 . . . . . . . 8 (𝑚 = 𝑋𝑚 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
7372eleq1d 2683 . . . . . . 7 (𝑚 = 𝑋 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
7473rspcv 3294 . . . . . 6 (𝑋𝑆 → (∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
7533, 71, 74sylc 65 . . . . 5 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
7645, 75resubcld 10410 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ∈ ℝ)
7759, 33sseldi 3585 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
78 reflcl 12545 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
7977, 78syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ∈ ℝ)
8077, 79resubcld 10410 . . . . . . 7 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
8180, 75remulcld 10022 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
8281, 45readdcld 10021 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
8382, 75resubcld 10410 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ∈ ℝ)
84 fracge0 12553 . . . . . . . 8 (𝑋 ∈ ℝ → 0 ≤ (𝑋 − (⌊‘𝑋)))
8577, 84syl 17 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
86 dvfsumlem4.3 . . . . . . . . 9 (𝜑𝐷𝑋)
8777rexrd 10041 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ*)
8859, 1sseldi 3585 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ)
8988rexrd 10041 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ*)
90 dvfsum.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ*)
91 dvfsumlem4.4 . . . . . . . . . 10 (𝜑𝑋𝑌)
92 dvfsumlem4.5 . . . . . . . . . 10 (𝜑𝑌𝑈)
9387, 89, 90, 91, 92xrletrd 11945 . . . . . . . . 9 (𝜑𝑋𝑈)
9433, 86, 933jca 1240 . . . . . . . 8 (𝜑 → (𝑋𝑆𝐷𝑋𝑋𝑈))
95 simpr1 1065 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 𝑋𝑆)
96 nfv 1840 . . . . . . . . . . 11 𝑥(𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈))
97 nfcv 2761 . . . . . . . . . . . 12 𝑥0
98 nfcv 2761 . . . . . . . . . . . 12 𝑥
99 nfcsb1v 3534 . . . . . . . . . . . 12 𝑥𝑋 / 𝑥𝐵
10097, 98, 99nfbr 4664 . . . . . . . . . . 11 𝑥0 ≤ 𝑋 / 𝑥𝐵
10196, 100nfim 1822 . . . . . . . . . 10 𝑥((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 0 ≤ 𝑋 / 𝑥𝐵)
102 eleq1 2686 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥𝑆𝑋𝑆))
103 breq2 4622 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
104 breq1 4621 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
105102, 103, 1043anbi123d 1396 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝑥𝑆𝐷𝑥𝑥𝑈) ↔ (𝑋𝑆𝐷𝑋𝑋𝑈)))
106105anbi2d 739 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈))))
107 csbeq1a 3527 . . . . . . . . . . . 12 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
108107breq2d 4630 . . . . . . . . . . 11 (𝑥 = 𝑋 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑋 / 𝑥𝐵))
109106, 108imbi12d 334 . . . . . . . . . 10 (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 0 ≤ 𝑋 / 𝑥𝐵)))
110 dvfsumlem4.0 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵)
111101, 109, 110vtoclg1f 3254 . . . . . . . . 9 (𝑋𝑆 → ((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 0 ≤ 𝑋 / 𝑥𝐵))
11295, 111mpcom 38 . . . . . . . 8 ((𝜑 ∧ (𝑋𝑆𝐷𝑋𝑋𝑈)) → 0 ≤ 𝑋 / 𝑥𝐵)
11394, 112mpdan 701 . . . . . . 7 (𝜑 → 0 ≤ 𝑋 / 𝑥𝐵)
11480, 75, 85, 113mulge0d 10556 . . . . . 6 (𝜑 → 0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
11545, 81addge02d 10568 . . . . . 6 (𝜑 → (0 ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))))
116114, 115mpbid 222 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
11745, 82, 75, 116lesub1dd 10595 . . . 4 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
118 reflcl 12545 . . . . . . . . . 10 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
11988, 118syl 17 . . . . . . . . 9 (𝜑 → (⌊‘𝑌) ∈ ℝ)
12088, 119resubcld 10410 . . . . . . . 8 (𝜑 → (𝑌 − (⌊‘𝑌)) ∈ ℝ)
121 csbeq1 3521 . . . . . . . . . . 11 (𝑚 = 𝑌𝑚 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
122121eleq1d 2683 . . . . . . . . . 10 (𝑚 = 𝑌 → (𝑚 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
123122rspcv 3294 . . . . . . . . 9 (𝑌𝑆 → (∀𝑚𝑆 𝑚 / 𝑥𝐵 ∈ ℝ → 𝑌 / 𝑥𝐵 ∈ ℝ))
1241, 71, 123sylc 65 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐵 ∈ ℝ)
125120, 124remulcld 10022 . . . . . . 7 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
126125, 21readdcld 10021 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ)
127126, 124resubcld 10410 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵) ∈ ℝ)
128 dvfsum.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
129 dvfsum.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
130 dvfsum.md . . . . . . . 8 (𝜑𝑀 ≤ (𝐷 + 1))
131 dvfsum.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
132 dvfsum.l . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
133 eqid 2621 . . . . . . . 8 (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))) = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
13457, 6, 128, 129, 130, 131, 13, 61, 3, 62, 8, 90, 132, 133, 33, 1, 86, 91, 92dvfsumlem3 23712 . . . . . . 7 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) ∧ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) − 𝑋 / 𝑥𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) − 𝑌 / 𝑥𝐵)))
135134simprd 479 . . . . . 6 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) − 𝑋 / 𝑥𝐵) ≤ (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) − 𝑌 / 𝑥𝐵))
136 nfcv 2761 . . . . . . . . . . 11 𝑥(𝑋 − (⌊‘𝑋))
137 nfcv 2761 . . . . . . . . . . 11 𝑥 ·
138136, 137, 99nfov 6636 . . . . . . . . . 10 𝑥((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵)
139 nfcv 2761 . . . . . . . . . 10 𝑥 +
140138, 139, 48nfov 6636 . . . . . . . . 9 𝑥(((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))
141 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑋𝑥 = 𝑋)
142141, 49oveq12d 6628 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 − (⌊‘𝑥)) = (𝑋 − (⌊‘𝑋)))
143142, 107oveq12d 6628 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
144143, 52oveq12d 6628 . . . . . . . . 9 (𝑥 = 𝑋 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
14546, 140, 144, 133fvmptf 6262 . . . . . . . 8 ((𝑋𝑆 ∧ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
14633, 82, 145syl2anc 692 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
147146oveq1d 6625 . . . . . 6 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋) − 𝑋 / 𝑥𝐵) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵))
148 nfcv 2761 . . . . . . . . . . 11 𝑥(𝑌 − (⌊‘𝑌))
149 nfcsb1v 3534 . . . . . . . . . . 11 𝑥𝑌 / 𝑥𝐵
150148, 137, 149nfov 6636 . . . . . . . . . 10 𝑥((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)
151150, 139, 25nfov 6636 . . . . . . . . 9 𝑥(((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
152 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑌𝑥 = 𝑌)
153152, 26oveq12d 6628 . . . . . . . . . . 11 (𝑥 = 𝑌 → (𝑥 − (⌊‘𝑥)) = (𝑌 − (⌊‘𝑌)))
154 csbeq1a 3527 . . . . . . . . . . 11 (𝑥 = 𝑌𝐵 = 𝑌 / 𝑥𝐵)
155153, 154oveq12d 6628 . . . . . . . . . 10 (𝑥 = 𝑌 → ((𝑥 − (⌊‘𝑥)) · 𝐵) = ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
156155, 29oveq12d 6628 . . . . . . . . 9 (𝑥 = 𝑌 → (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
15722, 151, 156, 133fvmptf 6262 . . . . . . . 8 ((𝑌𝑆 ∧ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ∈ ℝ) → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
1581, 126, 157syl2anc 692 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
159158oveq1d 6625 . . . . . 6 (𝜑 → (((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) − 𝑌 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵))
160135, 147, 1593brtr3d 4649 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵))
16121recnd 10020 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∈ ℂ)
162124recnd 10020 . . . . . . . 8 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
163125recnd 10020 . . . . . . . 8 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
164161, 162, 163subsub3d 10374 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))) = (((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) − 𝑌 / 𝑥𝐵))
165161, 163addcomd 10190 . . . . . . . 8 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
166165oveq1d 6625 . . . . . . 7 (𝜑 → (((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) + ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) − 𝑌 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵))
167164, 166eqtrd 2655 . . . . . 6 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))) = ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵))
168 1red 10007 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
169129, 77, 88, 86, 91letrd 10146 . . . . . . . . . . . 12 (𝜑𝐷𝑌)
1701, 169, 923jca 1240 . . . . . . . . . . 11 (𝜑 → (𝑌𝑆𝐷𝑌𝑌𝑈))
171 simpr1 1065 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 𝑌𝑆)
172 nfv 1840 . . . . . . . . . . . . . 14 𝑥(𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈))
17397, 98, 149nfbr 4664 . . . . . . . . . . . . . 14 𝑥0 ≤ 𝑌 / 𝑥𝐵
174172, 173nfim 1822 . . . . . . . . . . . . 13 𝑥((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 0 ≤ 𝑌 / 𝑥𝐵)
175 eleq1 2686 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (𝑥𝑆𝑌𝑆))
176 breq2 4622 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (𝐷𝑥𝐷𝑌))
177 breq1 4621 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (𝑥𝑈𝑌𝑈))
178175, 176, 1773anbi123d 1396 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → ((𝑥𝑆𝐷𝑥𝑥𝑈) ↔ (𝑌𝑆𝐷𝑌𝑌𝑈)))
179178anbi2d 739 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) ↔ (𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈))))
180154breq2d 4630 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (0 ≤ 𝐵 ↔ 0 ≤ 𝑌 / 𝑥𝐵))
181179, 180imbi12d 334 . . . . . . . . . . . . 13 (𝑥 = 𝑌 → (((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥𝑈)) → 0 ≤ 𝐵) ↔ ((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 0 ≤ 𝑌 / 𝑥𝐵)))
182174, 181, 110vtoclg1f 3254 . . . . . . . . . . . 12 (𝑌𝑆 → ((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 0 ≤ 𝑌 / 𝑥𝐵))
183171, 182mpcom 38 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝑆𝐷𝑌𝑌𝑈)) → 0 ≤ 𝑌 / 𝑥𝐵)
184170, 183mpdan 701 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑌 / 𝑥𝐵)
185 fracle1 12552 . . . . . . . . . . 11 (𝑌 ∈ ℝ → (𝑌 − (⌊‘𝑌)) ≤ 1)
18688, 185syl 17 . . . . . . . . . 10 (𝜑 → (𝑌 − (⌊‘𝑌)) ≤ 1)
187120, 168, 124, 184, 186lemul1ad 10915 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ≤ (1 · 𝑌 / 𝑥𝐵))
188162mulid2d 10010 . . . . . . . . 9 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
189187, 188breqtrd 4644 . . . . . . . 8 (𝜑 → ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ≤ 𝑌 / 𝑥𝐵)
190124, 125subge0d 10569 . . . . . . . 8 (𝜑 → (0 ≤ (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) ↔ ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ≤ 𝑌 / 𝑥𝐵))
191189, 190mpbird 247 . . . . . . 7 (𝜑 → 0 ≤ (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)))
192124, 125resubcld 10410 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) ∈ ℝ)
19321, 192subge02d 10571 . . . . . . 7 (𝜑 → (0 ≤ (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵)) ↔ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
194191, 193mpbid 222 . . . . . 6 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (𝑌 / 𝑥𝐵 − ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
195167, 194eqbrtrrd 4642 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) − 𝑌 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
19683, 127, 21, 160, 195letrd 10146 . . . 4 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
19776, 83, 21, 117, 196letrd 10146 . . 3 (𝜑 → ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))
19875, 45readdcld 10021 . . . . 5 (𝜑 → (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ∈ ℝ)
199 fracge0 12553 . . . . . . . . 9 (𝑌 ∈ ℝ → 0 ≤ (𝑌 − (⌊‘𝑌)))
20088, 199syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝑌 − (⌊‘𝑌)))
201120, 124, 200, 184mulge0d 10556 . . . . . . 7 (𝜑 → 0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵))
20221, 125addge02d 10568 . . . . . . 7 (𝜑 → (0 ≤ ((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) ↔ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴))))
203201, 202mpbid 222 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)))
204134simpld 475 . . . . . . 7 (𝜑 → ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑌) ≤ ((𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))‘𝑋))
205204, 158, 1463brtr3d 4649 . . . . . 6 (𝜑 → (((𝑌 − (⌊‘𝑌)) · 𝑌 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴)) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
20621, 126, 82, 203, 205letrd 10146 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
207 fracle1 12552 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋 − (⌊‘𝑋)) ≤ 1)
20877, 207syl 17 . . . . . . . 8 (𝜑 → (𝑋 − (⌊‘𝑋)) ≤ 1)
20980, 168, 75, 113, 208lemul1ad 10915 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ (1 · 𝑋 / 𝑥𝐵))
21075recnd 10020 . . . . . . . 8 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
211210mulid2d 10010 . . . . . . 7 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
212209, 211breqtrd 4644 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ≤ 𝑋 / 𝑥𝐵)
21381, 75, 45, 212leadd1dd 10593 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
21421, 82, 198, 206, 213letrd 10146 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)))
21545recnd 10020 . . . . 5 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) ∈ ℂ)
216210, 215addcomd 10190 . . . 4 (𝜑 → (𝑋 / 𝑥𝐵 + (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴)) = ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) + 𝑋 / 𝑥𝐵))
217214, 216breqtrd 4644 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) + 𝑋 / 𝑥𝐵))
21821, 45, 75absdifled 14115 . . 3 (𝜑 → ((abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) ≤ 𝑋 / 𝑥𝐵 ↔ (((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ∧ (Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) ≤ ((Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴) + 𝑋 / 𝑥𝐵))))
219197, 217, 218mpbir2and 956 . 2 (𝜑 → (abs‘((Σ𝑘 ∈ (𝑀...(⌊‘𝑌))𝐶𝑌 / 𝑥𝐴) − (Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶𝑋 / 𝑥𝐴))) ≤ 𝑋 / 𝑥𝐵)
22056, 219eqbrtrd 4640 1 (𝜑 → (abs‘((𝐺𝑌) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  csb 3518  wss 3559   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  +∞cpnf 10023  *cxr 10025  cle 10027  cmin 10218  cz 11329  cuz 11639  (,)cioo 12125  ...cfz 12276  cfl 12539  abscabs 13916  Σcsu 14358   D cdv 23550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-cmp 21113  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554
This theorem is referenced by:  dvfsumrlim  23715  dvfsumrlim2  23716  logexprlim  24867
  Copyright terms: Public domain W3C validator