MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim Structured version   Visualization version   GIF version

Theorem dvfsumrlim 23839
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝐴(𝑥) = ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
Assertion
Ref Expression
dvfsumrlim (𝜑𝐺 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim
Dummy variables 𝑦 𝑒 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4 𝑆 = (𝑇(,)+∞)
2 ioossre 12273 . . . 4 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3668 . . 3 𝑆 ⊆ ℝ
43a1i 11 . 2 (𝜑𝑆 ⊆ ℝ)
5 dvfsum.z . . . 4 𝑍 = (ℤ𝑀)
6 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
7 dvfsum.d . . . 4 (𝜑𝐷 ∈ ℝ)
8 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
9 dvfsum.t . . . 4 (𝜑𝑇 ∈ ℝ)
10 dvfsum.a . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
11 dvfsum.b1 . . . 4 ((𝜑𝑥𝑆) → 𝐵𝑉)
12 dvfsum.b2 . . . 4 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
13 dvfsum.b3 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
14 dvfsum.c . . . 4 (𝑥 = 𝑘𝐵 = 𝐶)
15 dvfsumrlim.g . . . 4 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
161, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dvfsumrlimf 23833 . . 3 (𝜑𝐺:𝑆⟶ℝ)
17 ax-resscn 10031 . . 3 ℝ ⊆ ℂ
18 fss 6094 . . 3 ((𝐺:𝑆⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:𝑆⟶ℂ)
1916, 17, 18sylancl 695 . 2 (𝜑𝐺:𝑆⟶ℂ)
201supeq1i 8394 . . 3 sup(𝑆, ℝ*, < ) = sup((𝑇(,)+∞), ℝ*, < )
21 ressxr 10121 . . . . 5 ℝ ⊆ ℝ*
2221, 9sseldi 3634 . . . 4 (𝜑𝑇 ∈ ℝ*)
239renepnfd 10128 . . . 4 (𝜑𝑇 ≠ +∞)
24 ioopnfsup 12703 . . . 4 ((𝑇 ∈ ℝ*𝑇 ≠ +∞) → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2522, 23, 24syl2anc 694 . . 3 (𝜑 → sup((𝑇(,)+∞), ℝ*, < ) = +∞)
2620, 25syl5eq 2697 . 2 (𝜑 → sup(𝑆, ℝ*, < ) = +∞)
27 dvfsumrlim.k . . . 4 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
2811, 27rlimmptrcl 14382 . . . . . 6 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
2928ralrimiva 2995 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℂ)
3029, 4rlim0 14283 . . . 4 (𝜑 → ((𝑥𝑆𝐵) ⇝𝑟 0 ↔ ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3127, 30mpbid 222 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒))
323a1i 11 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑆 ⊆ ℝ)
33 peano2re 10247 . . . . . . . . 9 (𝑇 ∈ ℝ → (𝑇 + 1) ∈ ℝ)
349, 33syl 17 . . . . . . . 8 (𝜑 → (𝑇 + 1) ∈ ℝ)
3534, 7ifcld 4164 . . . . . . 7 (𝜑 → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
3635adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ)
37 rexico 14137 . . . . . 6 ((𝑆 ⊆ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
3832, 36, 37syl2anc 694 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)))
39 elicopnf 12307 . . . . . . . . . . . . . 14 (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ∈ ℝ → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4035, 39syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ↔ (𝑐 ∈ ℝ ∧ if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)))
4140simprbda 652 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ ℝ)
429adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ)
4342, 33syl 17 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ∈ ℝ)
4442ltp1d 10992 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < (𝑇 + 1))
4540simplbda 653 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐)
467adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷 ∈ ℝ)
47 maxle 12060 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ ℝ ∧ (𝑇 + 1) ∈ ℝ ∧ 𝑐 ∈ ℝ) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4846, 43, 41, 47syl3anc 1366 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷) ≤ 𝑐 ↔ (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐)))
4945, 48mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝐷𝑐 ∧ (𝑇 + 1) ≤ 𝑐))
5049simprd 478 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑇 + 1) ≤ 𝑐)
5142, 43, 41, 44, 50ltletrd 10235 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 < 𝑐)
5222adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑇 ∈ ℝ*)
53 elioopnf 12305 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5452, 53syl 17 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐 ∈ (𝑇(,)+∞) ↔ (𝑐 ∈ ℝ ∧ 𝑇 < 𝑐)))
5541, 51, 54mpbir2and 977 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐 ∈ (𝑇(,)+∞))
5655, 1syl6eleqr 2741 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝑐𝑆)
5749simpld 474 . . . . . . . . . 10 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → 𝐷𝑐)
5856, 57jca 553 . . . . . . . . 9 ((𝜑𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
5958adantlr 751 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (𝑐𝑆𝐷𝑐))
60 simprrl 821 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝑐𝑆)
6160adantrr 753 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑆)
623, 61sseldi 3634 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 ∈ ℝ)
6362leidd 10632 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑐)
64 nfv 1883 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑐𝑐
65 nfcv 2793 . . . . . . . . . . . . . . . . . . . . 21 𝑥abs
66 nfcsb1v 3582 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑐 / 𝑥𝐵
6765, 66nffv 6236 . . . . . . . . . . . . . . . . . . . 20 𝑥(abs‘𝑐 / 𝑥𝐵)
68 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑥 <
69 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑒
7067, 68, 69nfbr 4732 . . . . . . . . . . . . . . . . . . 19 𝑥(abs‘𝑐 / 𝑥𝐵) < 𝑒
7164, 70nfim 1865 . . . . . . . . . . . . . . . . . 18 𝑥(𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)
72 breq2 4689 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → (𝑐𝑥𝑐𝑐))
73 csbeq1a 3575 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐𝐵 = 𝑐 / 𝑥𝐵)
7473fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑐 → (abs‘𝐵) = (abs‘𝑐 / 𝑥𝐵))
7574breq1d 4695 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ((abs‘𝐵) < 𝑒 ↔ (abs‘𝑐 / 𝑥𝐵) < 𝑒))
7672, 75imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ((𝑐𝑥 → (abs‘𝐵) < 𝑒) ↔ (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7771, 76rspc 3334 . . . . . . . . . . . . . . . . 17 (𝑐𝑆 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7861, 77syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑐 → (abs‘𝑐 / 𝑥𝐵) < 𝑒)))
7963, 78mpid 44 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘𝑐 / 𝑥𝐵) < 𝑒))
804, 10, 11, 13dvmptrecl 23832 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
8180adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ ℝ)
82 dvfsumrlim.l . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
831, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 82, 15, 27dvfsumrlimge0 23838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
84 elrege0 12316 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
8581, 83, 84sylanbrc 699 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 𝐵 ∈ (0[,)+∞))
8685expr 642 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑆) → (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8786ralrimiva 2995 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
8887adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)))
89 simprrr 822 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → 𝐷𝑐)
9089adantrr 753 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷𝑐)
91 nfv 1883 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 𝐷𝑐
9266nfel1 2808 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑐 / 𝑥𝐵 ∈ (0[,)+∞)
9391, 92nfim 1865 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
94 breq2 4689 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐷𝑥𝐷𝑐))
9573eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑐 → (𝐵 ∈ (0[,)+∞) ↔ 𝑐 / 𝑥𝐵 ∈ (0[,)+∞)))
9694, 95imbi12d 333 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑐 → ((𝐷𝑥𝐵 ∈ (0[,)+∞)) ↔ (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9793, 96rspc 3334 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝑆 → (∀𝑥𝑆 (𝐷𝑥𝐵 ∈ (0[,)+∞)) → (𝐷𝑐𝑐 / 𝑥𝐵 ∈ (0[,)+∞))))
9861, 88, 90, 97syl3c 66 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ (0[,)+∞))
99 elrege0 12316 . . . . . . . . . . . . . . . . . . 19 (𝑐 / 𝑥𝐵 ∈ (0[,)+∞) ↔ (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
10098, 99sylib 208 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵))
101 absid 14080 . . . . . . . . . . . . . . . . . 18 ((𝑐 / 𝑥𝐵 ∈ ℝ ∧ 0 ≤ 𝑐 / 𝑥𝐵) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
102100, 101syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘𝑐 / 𝑥𝐵) = 𝑐 / 𝑥𝐵)
103102breq1d 4695 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒𝑐 / 𝑥𝐵 < 𝑒))
1046adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ∈ ℤ)
1057adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐷 ∈ ℝ)
1068adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑀 ≤ (𝐷 + 1))
1079adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑇 ∈ ℝ)
10810adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
10911adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑆) → 𝐵𝑉)
11012adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
11113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
112 pnfxr 10130 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
113112a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → +∞ ∈ ℝ*)
114 3simpa 1078 . . . . . . . . . . . . . . . . . . . 20 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
115114, 82syl3an3 1401 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
1161153adant1r 1359 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
117833adantr3 1242 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
118117adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
119 simprrl 821 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦𝑆)
120 simprrr 822 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐𝑦)
1213, 21sstri 3645 . . . . . . . . . . . . . . . . . . . 20 𝑆 ⊆ ℝ*
122121, 119sseldi 3634 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ∈ ℝ*)
123 pnfge 12002 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
124122, 123syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑦 ≤ +∞)
1251, 5, 104, 105, 106, 107, 108, 109, 110, 111, 14, 113, 116, 15, 118, 61, 119, 90, 120, 124dvfsumlem4 23837 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵)
12619adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝐺:𝑆⟶ℂ)
127126, 119ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑦) ∈ ℂ)
128126, 61ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝐺𝑐) ∈ ℂ)
129127, 128subcld 10430 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((𝐺𝑦) − (𝐺𝑐)) ∈ ℂ)
130129abscld 14219 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ)
131100simpld 474 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑐 / 𝑥𝐵 ∈ ℝ)
132 simprll 819 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ+)
133132rpred 11910 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → 𝑒 ∈ ℝ)
134 lelttr 10166 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐺𝑦) − (𝐺𝑐))) ∈ ℝ ∧ 𝑐 / 𝑥𝐵 ∈ ℝ ∧ 𝑒 ∈ ℝ) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
135130, 131, 133, 134syl3anc 1366 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (((abs‘((𝐺𝑦) − (𝐺𝑐))) ≤ 𝑐 / 𝑥𝐵𝑐 / 𝑥𝐵 < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
136125, 135mpand 711 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (𝑐 / 𝑥𝐵 < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
137103, 136sylbid 230 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → ((abs‘𝑐 / 𝑥𝐵) < 𝑒 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
13879, 137syld 47 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐)) ∧ (𝑦𝑆𝑐𝑦))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
139138anassrs 681 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ (𝑦𝑆𝑐𝑦)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
140139expr 642 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (𝑐𝑦 → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
141140com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) ∧ 𝑦𝑆) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
142141ralrimdva 2998 . . . . . . . . . 10 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
143142, 60jctild 565 . . . . . . . . 9 ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ (𝑐𝑆𝐷𝑐))) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
144143anassrs 681 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ (𝑐𝑆𝐷𝑐)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
14559, 144syldan 486 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)) → (∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
146145expimpd 628 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞) ∧ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒)) → (𝑐𝑆 ∧ ∀𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))))
147146reximdv2 3043 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ (if(𝐷 ≤ (𝑇 + 1), (𝑇 + 1), 𝐷)[,)+∞)∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
14838, 147sylbird 250 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∃𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
149148ralimdva 2991 . . 3 (𝜑 → (∀𝑒 ∈ ℝ+𝑐 ∈ ℝ ∀𝑥𝑆 (𝑐𝑥 → (abs‘𝐵) < 𝑒) → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒)))
15031, 149mpd 15 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑐𝑆𝑦𝑆 (𝑐𝑦 → (abs‘((𝐺𝑦) − (𝐺𝑐))) < 𝑒))
1514, 19, 26, 150caucvgr 14450 1 (𝜑𝐺 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  csb 3566  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304  cz 11415  cuz 11725  +crp 11870  (,)cioo 12213  [,)cico 12215  ...cfz 12364  cfl 12631  abscabs 14018  𝑟 crli 14260  Σcsu 14460   D cdv 23672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676
This theorem is referenced by:  dvfsumrlim3  23841
  Copyright terms: Public domain W3C validator