MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim2 Structured version   Visualization version   GIF version

Theorem dvfsumrlim2 23706
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥𝑆𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 = 𝐴(𝑥) converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim2.1 (𝜑𝑋𝑆)
dvfsumrlim2.2 (𝜑𝐷𝑋)
Assertion
Ref Expression
dvfsumrlim2 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim2
Dummy variables 𝑦 𝑧 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . 7 𝑆 = (𝑇(,)+∞)
2 ioossre 12180 . . . . . . 7 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3616 . . . . . 6 𝑆 ⊆ ℝ
4 dvfsumrlim2.1 . . . . . 6 (𝜑𝑋𝑆)
53, 4sseldi 3582 . . . . 5 (𝜑𝑋 ∈ ℝ)
65rexrd 10036 . . . 4 (𝜑𝑋 ∈ ℝ*)
75renepnfd 10037 . . . 4 (𝜑𝑋 ≠ +∞)
8 icopnfsup 12607 . . . 4 ((𝑋 ∈ ℝ*𝑋 ≠ +∞) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
96, 7, 8syl2anc 692 . . 3 (𝜑 → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
109adantr 481 . 2 ((𝜑𝐺𝑟 𝐿) → sup((𝑋[,)+∞), ℝ*, < ) = +∞)
11 dvfsum.z . . . . . . . 8 𝑍 = (ℤ𝑀)
12 dvfsum.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
13 dvfsum.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
14 dvfsum.md . . . . . . . 8 (𝜑𝑀 ≤ (𝐷 + 1))
15 dvfsum.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
16 dvfsum.a . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
17 dvfsum.b1 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
18 dvfsum.b2 . . . . . . . 8 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
19 dvfsum.b3 . . . . . . . 8 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
20 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
21 dvfsumrlim.g . . . . . . . 8 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
221, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21dvfsumrlimf 23699 . . . . . . 7 (𝜑𝐺:𝑆⟶ℝ)
2322ad2antrr 761 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝐺:𝑆⟶ℝ)
244ad2antrr 761 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
2523, 24ffvelrnd 6318 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℝ)
2625recnd 10015 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑋) ∈ ℂ)
2715rexrd 10036 . . . . . . . . . 10 (𝜑𝑇 ∈ ℝ*)
284, 1syl6eleq 2708 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝑇(,)+∞))
29 elioopnf 12212 . . . . . . . . . . . . 13 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3027, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
3128, 30mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
3231simprd 479 . . . . . . . . . 10 (𝜑𝑇 < 𝑋)
33 df-ioo 12124 . . . . . . . . . . 11 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
34 df-ico 12126 . . . . . . . . . . 11 [,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢𝑤𝑤 < 𝑣)})
35 xrltletr 11935 . . . . . . . . . . 11 ((𝑇 ∈ ℝ*𝑋 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑇 < 𝑋𝑋𝑧) → 𝑇 < 𝑧))
3633, 34, 35ixxss1 12138 . . . . . . . . . 10 ((𝑇 ∈ ℝ*𝑇 < 𝑋) → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3727, 32, 36syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑋[,)+∞) ⊆ (𝑇(,)+∞))
3837, 1syl6sseqr 3633 . . . . . . . 8 (𝜑 → (𝑋[,)+∞) ⊆ 𝑆)
3938adantr 481 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ 𝑆)
4039sselda 3584 . . . . . 6 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
4123, 40ffvelrnd 6318 . . . . 5 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℝ)
4241recnd 10015 . . . 4 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (𝐺𝑦) ∈ ℂ)
4326, 42subcld 10339 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → ((𝐺𝑋) − (𝐺𝑦)) ∈ ℂ)
44 pnfxr 10039 . . . . . . 7 +∞ ∈ ℝ*
45 icossre 12199 . . . . . . 7 ((𝑋 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑋[,)+∞) ⊆ ℝ)
465, 44, 45sylancl 693 . . . . . 6 (𝜑 → (𝑋[,)+∞) ⊆ ℝ)
4746adantr 481 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑋[,)+∞) ⊆ ℝ)
48 rlimf 14169 . . . . . . . 8 (𝐺𝑟 𝐿𝐺:dom 𝐺⟶ℂ)
4948adantl 482 . . . . . . 7 ((𝜑𝐺𝑟 𝐿) → 𝐺:dom 𝐺⟶ℂ)
50 ovex 6635 . . . . . . . . 9 𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴) ∈ V
5150, 21dmmpti 5982 . . . . . . . 8 dom 𝐺 = 𝑆
5251feq2i 5996 . . . . . . 7 (𝐺:dom 𝐺⟶ℂ ↔ 𝐺:𝑆⟶ℂ)
5349, 52sylib 208 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺:𝑆⟶ℂ)
544adantr 481 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝑋𝑆)
5553, 54ffvelrnd 6318 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝐺𝑋) ∈ ℂ)
56 rlimconst 14212 . . . . 5 (((𝑋[,)+∞) ⊆ ℝ ∧ (𝐺𝑋) ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5747, 55, 56syl2anc 692 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑋)) ⇝𝑟 (𝐺𝑋))
5853feqmptd 6208 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺 = (𝑦𝑆 ↦ (𝐺𝑦)))
59 simpr 477 . . . . . 6 ((𝜑𝐺𝑟 𝐿) → 𝐺𝑟 𝐿)
6058, 59eqbrtrrd 4639 . . . . 5 ((𝜑𝐺𝑟 𝐿) → (𝑦𝑆 ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6139, 60rlimres2 14229 . . . 4 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (𝐺𝑦)) ⇝𝑟 𝐿)
6226, 42, 57, 61rlimsub 14311 . . 3 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ ((𝐺𝑋) − (𝐺𝑦))) ⇝𝑟 ((𝐺𝑋) − 𝐿))
6343, 62rlimabs 14276 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ (abs‘((𝐺𝑋) − (𝐺𝑦)))) ⇝𝑟 (abs‘((𝐺𝑋) − 𝐿)))
643a1i 11 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
6564, 16, 17, 19dvmptrecl 23698 . . . . . . 7 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
6665ralrimiva 2960 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
67 nfcsb1v 3531 . . . . . . . 8 𝑥𝑋 / 𝑥𝐵
6867nfel1 2775 . . . . . . 7 𝑥𝑋 / 𝑥𝐵 ∈ ℝ
69 csbeq1a 3524 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
7069eleq1d 2683 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
7168, 70rspc 3289 . . . . . 6 (𝑋𝑆 → (∀𝑥𝑆 𝐵 ∈ ℝ → 𝑋 / 𝑥𝐵 ∈ ℝ))
724, 66, 71sylc 65 . . . . 5 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
7372recnd 10015 . . . 4 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
74 rlimconst 14212 . . . 4 (((𝑋[,)+∞) ⊆ ℝ ∧ 𝑋 / 𝑥𝐵 ∈ ℂ) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7546, 73, 74syl2anc 692 . . 3 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7675adantr 481 . 2 ((𝜑𝐺𝑟 𝐿) → (𝑦 ∈ (𝑋[,)+∞) ↦ 𝑋 / 𝑥𝐵) ⇝𝑟 𝑋 / 𝑥𝐵)
7743abscld 14112 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ∈ ℝ)
7872ad2antrr 761 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → 𝑋 / 𝑥𝐵 ∈ ℝ)
7926, 42abssubd 14129 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑋))))
8012adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ∈ ℤ)
8113adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷 ∈ ℝ)
8214adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑀 ≤ (𝐷 + 1))
8315adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑇 ∈ ℝ)
8416adantlr 750 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
8517adantlr 750 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑆) → 𝐵𝑉)
8618adantlr 750 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
8719adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
8844a1i 11 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → +∞ ∈ ℝ*)
89 3simpa 1056 . . . . . . 7 ((𝐷𝑥𝑥𝑘𝑘 ≤ +∞) → (𝐷𝑥𝑥𝑘))
90 dvfsumrlim.l . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
9189, 90syl3an3 1358 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
92913adant1r 1316 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘 ≤ +∞)) → 𝐶𝐵)
93 dvfsumrlim.k . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
941, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 90, 21, 93dvfsumrlimge0 23704 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝐷𝑥)) → 0 ≤ 𝐵)
95943adantr3 1220 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
9695adantlr 750 . . . . 5 (((𝜑𝑦 ∈ (𝑋[,)+∞)) ∧ (𝑥𝑆𝐷𝑥𝑥 ≤ +∞)) → 0 ≤ 𝐵)
974adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑆)
9838sselda 3584 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦𝑆)
99 dvfsumrlim2.2 . . . . . 6 (𝜑𝐷𝑋)
10099adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝐷𝑋)
101 elicopnf 12214 . . . . . . 7 (𝑋 ∈ ℝ → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
1025, 101syl 17 . . . . . 6 (𝜑 → (𝑦 ∈ (𝑋[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦)))
103102simplbda 653 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑋𝑦)
104102simprbda 652 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ)
105104rexrd 10036 . . . . . 6 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ∈ ℝ*)
106 pnfge 11911 . . . . . 6 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
107105, 106syl 17 . . . . 5 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → 𝑦 ≤ +∞)
1081, 11, 80, 81, 82, 83, 84, 85, 86, 87, 20, 88, 92, 21, 96, 97, 98, 100, 103, 107dvfsumlem4 23703 . . . 4 ((𝜑𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
109108adantlr 750 . . 3 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑦) − (𝐺𝑋))) ≤ 𝑋 / 𝑥𝐵)
11079, 109eqbrtrd 4637 . 2 (((𝜑𝐺𝑟 𝐿) ∧ 𝑦 ∈ (𝑋[,)+∞)) → (abs‘((𝐺𝑋) − (𝐺𝑦))) ≤ 𝑋 / 𝑥𝐵)
11110, 63, 76, 77, 78, 110rlimle 14315 1 ((𝜑𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  csb 3515  wss 3556   class class class wbr 4615  cmpt 4675  dom cdm 5076  wf 5845  cfv 5849  (class class class)co 6607  supcsup 8293  cc 9881  cr 9882  0cc0 9883  1c1 9884   + caddc 9886  +∞cpnf 10018  *cxr 10020   < clt 10021  cle 10022  cmin 10213  cz 11324  cuz 11634  (,)cioo 12120  [,)cico 12122  ...cfz 12271  cfl 12534  abscabs 13911  𝑟 crli 14153  Σcsu 14353   D cdv 23540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-fl 12536  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-clim 14156  df-rlim 14157  df-sum 14354  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-lp 20853  df-perf 20854  df-cn 20944  df-cnp 20945  df-haus 21032  df-cmp 21103  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cncf 22594  df-limc 23543  df-dv 23544
This theorem is referenced by:  dvfsumrlim3  23707
  Copyright terms: Public domain W3C validator