MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvge0 Structured version   Visualization version   GIF version

Theorem dvge0 24605
Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvge0.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞))
dvge0.x (𝜑𝑋 ∈ (𝐴[,]𝐵))
dvge0.y (𝜑𝑌 ∈ (𝐴[,]𝐵))
dvge0.l (𝜑𝑋𝑌)
Assertion
Ref Expression
dvge0 (𝜑 → (𝐹𝑋) ≤ (𝐹𝑌))

Proof of Theorem dvge0
StepHypRef Expression
1 dvge0.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴[,]𝐵))
2 dvge0.y . . . . . . . 8 (𝜑𝑌 ∈ (𝐴[,]𝐵))
3 dvgt0.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4 dvgt0.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
5 dvgt0.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
6 dvge0.d . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞))
73, 4, 5, 6dvgt0lem1 24601 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))
87exp31 422 . . . . . . . 8 (𝜑 → ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋 < 𝑌 → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))))
91, 2, 8mp2and 697 . . . . . . 7 (𝜑 → (𝑋 < 𝑌 → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞)))
109imp 409 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞))
11 elrege0 12845 . . . . . . 7 ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞) ↔ ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ ℝ ∧ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
1211simprbi 499 . . . . . 6 ((((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ (0[,)+∞) → 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
1310, 12syl 17 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
14 cncff 23503 . . . . . . . . . 10 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
155, 14syl 17 . . . . . . . . 9 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
1615, 2ffvelrnd 6854 . . . . . . . 8 (𝜑 → (𝐹𝑌) ∈ ℝ)
1715, 1ffvelrnd 6854 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ ℝ)
1816, 17resubcld 11070 . . . . . . 7 (𝜑 → ((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ)
1918adantr 483 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ)
20 iccssre 12821 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
213, 4, 20syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2221, 2sseldd 3970 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
2321, 1sseldd 3970 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
2422, 23resubcld 11070 . . . . . . 7 (𝜑 → (𝑌𝑋) ∈ ℝ)
2524adantr 483 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
2623, 22posdifd 11229 . . . . . . 7 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
2726biimpa 479 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
28 ge0div 11509 . . . . . 6 ((((𝐹𝑌) − (𝐹𝑋)) ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋)) → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
2919, 25, 27, 28syl3anc 1367 . . . . 5 ((𝜑𝑋 < 𝑌) → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ 0 ≤ (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋))))
3013, 29mpbird 259 . . . 4 ((𝜑𝑋 < 𝑌) → 0 ≤ ((𝐹𝑌) − (𝐹𝑋)))
3130ex 415 . . 3 (𝜑 → (𝑋 < 𝑌 → 0 ≤ ((𝐹𝑌) − (𝐹𝑋))))
3216, 17subge0d 11232 . . 3 (𝜑 → (0 ≤ ((𝐹𝑌) − (𝐹𝑋)) ↔ (𝐹𝑋) ≤ (𝐹𝑌)))
3331, 32sylibd 241 . 2 (𝜑 → (𝑋 < 𝑌 → (𝐹𝑋) ≤ (𝐹𝑌)))
3416leidd 11208 . . 3 (𝜑 → (𝐹𝑌) ≤ (𝐹𝑌))
35 fveq2 6672 . . . 4 (𝑋 = 𝑌 → (𝐹𝑋) = (𝐹𝑌))
3635breq1d 5078 . . 3 (𝑋 = 𝑌 → ((𝐹𝑋) ≤ (𝐹𝑌) ↔ (𝐹𝑌) ≤ (𝐹𝑌)))
3734, 36syl5ibrcom 249 . 2 (𝜑 → (𝑋 = 𝑌 → (𝐹𝑋) ≤ (𝐹𝑌)))
38 dvge0.l . . 3 (𝜑𝑋𝑌)
3923, 22leloed 10785 . . 3 (𝜑 → (𝑋𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
4038, 39mpbid 234 . 2 (𝜑 → (𝑋 < 𝑌𝑋 = 𝑌))
4133, 37, 40mpjaod 856 1 (𝜑 → (𝐹𝑋) ≤ (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wss 3938   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  +∞cpnf 10674   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  (,)cioo 12741  [,)cico 12743  [,]cicc 12744  cnccncf 23486   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dvle  24606
  Copyright terms: Public domain W3C validator