Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem1 Structured version   Visualization version   GIF version

Theorem dvgt0lem1 23676
 Description: Lemma for dvgt0 23678 and dvlt0 23679. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvgt0lem.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
Assertion
Ref Expression
dvgt0lem1 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ 𝑆)

Proof of Theorem dvgt0lem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12201 . . . . . . 7 (𝐴[,]𝐵) ⊆ ℝ*
2 simplrl 799 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ (𝐴[,]𝐵))
31, 2sseldi 3582 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ*)
4 simplrr 800 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ (𝐴[,]𝐵))
51, 4sseldi 3582 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ*)
6 dvgt0.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
7 dvgt0.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
8 iccssre 12200 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
96, 7, 8syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
109ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐴[,]𝐵) ⊆ ℝ)
1110, 2sseldd 3585 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ)
1210, 4sseldd 3585 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ)
13 simpr 477 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
1411, 12, 13ltled 10132 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
15 ubicc2 12234 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
163, 5, 14, 15syl3anc 1323 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
17 fvres 6166 . . . . 5 (𝑌 ∈ (𝑋[,]𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) = (𝐹𝑌))
1816, 17syl 17 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) = (𝐹𝑌))
19 lbicc2 12233 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
203, 5, 14, 19syl3anc 1323 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
21 fvres 6166 . . . . 5 (𝑋 ∈ (𝑋[,]𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋) = (𝐹𝑋))
2220, 21syl 17 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋) = (𝐹𝑋))
2318, 22oveq12d 6625 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) = ((𝐹𝑌) − (𝐹𝑋)))
2423oveq1d 6622 . 2 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) = (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
25 iccss2 12189 . . . . . 6 ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋[,]𝑌) ⊆ (𝐴[,]𝐵))
2625ad2antlr 762 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ (𝐴[,]𝐵))
27 dvgt0.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
2827ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
29 rescncf 22613 . . . . 5 ((𝑋[,]𝑌) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ)))
3026, 28, 29sylc 65 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐹 ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
31 dvgt0lem.d . . . . . . . 8 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
3231ad2antrr 761 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
336ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ∈ ℝ)
3433rexrd 10036 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ∈ ℝ*)
357ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐵 ∈ ℝ)
36 elicc2 12183 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
3733, 35, 36syl2anc 692 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
382, 37mpbid 222 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
3938simp2d 1072 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴𝑋)
40 iooss1 12155 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
4134, 39, 40syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
4235rexrd 10036 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐵 ∈ ℝ*)
43 elicc2 12183 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
4433, 35, 43syl2anc 692 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
454, 44mpbid 222 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
4645simp3d 1073 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
47 iooss2 12156 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
4842, 46, 47syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
4941, 48sstrd 3594 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
5032, 49fssresd 6030 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶𝑆)
51 ax-resscn 9940 . . . . . . . . . 10 ℝ ⊆ ℂ
5251a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ℝ ⊆ ℂ)
53 cncff 22609 . . . . . . . . . . . 12 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
5427, 53syl 17 . . . . . . . . . . 11 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
5554ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
56 fss 6015 . . . . . . . . . 10 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5755, 51, 56sylancl 693 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
58 iccssre 12200 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
5911, 12, 58syl2anc 692 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ ℝ)
60 eqid 2621 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6160tgioo2 22519 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6260, 61dvres 23588 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑋[,]𝑌) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))))
6352, 57, 10, 59, 62syl22anc 1324 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))))
64 iccntr 22537 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
6511, 12, 64syl2anc 692 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
6665reseq2d 5358 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)))
6763, 66eqtrd 2655 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)))
6867feq1d 5989 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆 ↔ ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶𝑆))
6950, 68mpbird 247 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆)
70 fdm 6010 . . . . 5 ((ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆 → dom (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = (𝑋(,)𝑌))
7169, 70syl 17 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → dom (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = (𝑋(,)𝑌))
7211, 12, 13, 30, 71mvth 23666 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ∃𝑧 ∈ (𝑋(,)𝑌)((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)))
7369ffvelrnda 6317 . . . . 5 ((((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) ∧ 𝑧 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) ∈ 𝑆)
74 eleq1 2686 . . . . 5 (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) ∈ 𝑆 ↔ ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7573, 74syl5ibcom 235 . . . 4 ((((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) ∧ 𝑧 ∈ (𝑋(,)𝑌)) → (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7675rexlimdva 3024 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (∃𝑧 ∈ (𝑋(,)𝑌)((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7772, 76mpd 15 . 2 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆)
7824, 77eqeltrrd 2699 1 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   ⊆ wss 3556   class class class wbr 4615  dom cdm 5076  ran crn 5077   ↾ cres 5078  ⟶wf 5845  ‘cfv 5849  (class class class)co 6607  ℂcc 9881  ℝcr 9882  ℝ*cxr 10020   < clt 10021   ≤ cle 10022   − cmin 10213   / cdiv 10631  (,)cioo 12120  [,]cicc 12123  TopOpenctopn 16006  topGenctg 16022  ℂfldccnfld 19668  intcnt 20734  –cn→ccncf 22592   D cdv 23540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-lp 20853  df-perf 20854  df-cn 20944  df-cnp 20945  df-haus 21032  df-cmp 21103  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cncf 22594  df-limc 23543  df-dv 23544 This theorem is referenced by:  dvgt0  23678  dvlt0  23679  dvge0  23680
 Copyright terms: Public domain W3C validator