Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim2 Structured version   Visualization version   GIF version

Theorem dvh3dim2 38586
Description: There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh3dim2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 38584 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
98adantr 483 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
10 eqid 2823 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 38248 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
1211ad2antrr 724 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 19752 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
1413ad2antrr 724 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
153, 4, 11, 6, 7lspprid1 19771 . . . . . . . 8 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑍}))
1615ad2antrr 724 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑋 ∈ (𝑁‘{𝑋, 𝑍}))
17 simplr 767 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
1810, 4, 12, 14, 16, 17lspprss 19766 . . . . . 6 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑍}))
1918ssneld 3971 . . . . 5 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
2019ancrd 554 . . . 4 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
2120reximdva 3276 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
229, 21mpd 15 . 2 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
23 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
241, 2, 3, 4, 5, 6, 23dvh3dim 38584 . . . 4 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2524adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
26 simpl1l 1220 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝜑)
2726, 11syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑈 ∈ LMod)
28 simpl2 1188 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤𝑉)
2926, 23syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌𝑉)
30 eqid 2823 . . . . . . . 8 (+g𝑈) = (+g𝑈)
313, 30lmodvacl 19650 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
3227, 28, 29, 31syl3anc 1367 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
333, 10, 4, 11, 6, 23lspprcl 19752 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
3426, 33syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
353, 4, 11, 6, 23lspprid2 19772 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
3626, 35syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
37 simpl3 1189 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
383, 30, 10, 27, 34, 36, 28, 37lssvancl2 19719 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))
3926, 13syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
40 simpr 487 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
41 simpl1r 1221 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
423, 30, 10, 27, 39, 40, 29, 41lssvancl1 19718 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))
43 eleq1 2902 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
4443notbid 320 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
45 eleq1 2902 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))
4645notbid 320 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))
4744, 46anbi12d 632 . . . . . . 7 (𝑧 = (𝑤(+g𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))))
4847rspcev 3625 . . . . . 6 (((𝑤(+g𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
4932, 38, 42, 48syl12anc 834 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
50 simpl2 1188 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤𝑉)
51 simpl3 1189 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
52 simpr 487 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
53 eleq1 2902 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
5453notbid 320 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
55 eleq1 2902 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
5655notbid 320 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
5754, 56anbi12d 632 . . . . . . 7 (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))))
5857rspcev 3625 . . . . . 6 ((𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
5950, 51, 52, 58syl12anc 834 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6049, 59pm2.61dan 811 . . . 4 (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6160rexlimdv3a 3288 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
6225, 61mpd 15 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6322, 62pm2.61dan 811 1 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  {cpr 4571  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  LModclmod 19636  LSubSpclss 19705  LSpanclspn 19745  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533
This theorem is referenced by:  dvh3dim3N  38587  mapdh8ad  38917
  Copyright terms: Public domain W3C validator