Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim3N Structured version   Visualization version   GIF version

Theorem dvh3dim3N 36253
Description: There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 36252 everywhere. If this one is needed, make dvh3dim2 36252 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
dvh3dim3.t (𝜑𝑇𝑉)
Assertion
Ref Expression
dvh3dim3N (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧   𝑧,𝑇
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim3N
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
3 dvh3dim.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 dvh3dim.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dvh3dim.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5dvhlmod 35914 . . . . . 6 (𝜑𝑈 ∈ LMod)
76adantr 481 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LMod)
8 dvh3dim.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 dvh3dim2.z . . . . . . 7 (𝜑𝑍𝑉)
10 dvh3dim3.t . . . . . . 7 (𝜑𝑇𝑉)
118, 1, 2, 6, 9, 10lspprcl 18910 . . . . . 6 (𝜑 → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
1211adantr 481 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
13 simpr 477 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
148, 2, 6, 9, 10lspprid2 18930 . . . . . 6 (𝜑𝑇 ∈ (𝑁‘{𝑍, 𝑇}))
1514adantr 481 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑍, 𝑇}))
161, 2, 7, 12, 13, 15lspprss 18924 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ⊆ (𝑁‘{𝑍, 𝑇}))
17 sspss 3689 . . . 4 ((𝑁‘{𝑌, 𝑇}) ⊆ (𝑁‘{𝑍, 𝑇}) ↔ ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})))
1816, 17sylib 208 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})))
193, 4, 5dvhlvec 35913 . . . . . . 7 (𝜑𝑈 ∈ LVec)
2019adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec)
21 dvh3dim.y . . . . . . . 8 (𝜑𝑌𝑉)
228, 1, 2, 6, 21, 10lspprcl 18910 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑇}) ∈ (LSubSp‘𝑈))
2322adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ∈ (LSubSp‘𝑈))
249adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑍𝑉)
2510adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑇𝑉)
26 simpr 477 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}))
278, 1, 2, 20, 23, 24, 25, 26lspprat 19085 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → ∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}))
2853ad2ant1 1080 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simp2 1060 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑤𝑉)
30 dvh3dim.x . . . . . . . . . 10 (𝜑𝑋𝑉)
31303ad2ant1 1080 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑋𝑉)
3293ad2ant1 1080 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑍𝑉)
333, 4, 8, 2, 28, 29, 31, 32dvh3dim2 36252 . . . . . . . 8 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})))
3463ad2ant1 1080 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑈 ∈ LMod)
351lsssssubg 18890 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
378, 1, 2lspsncl 18909 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
386, 30, 37syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
39383ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
4036, 39sseldd 3588 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑈))
418, 1, 2lspsncl 18909 . . . . . . . . . . . . . . 15 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑁‘{𝑤}) ∈ (LSubSp‘𝑈))
4234, 29, 41syl2anc 692 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ∈ (LSubSp‘𝑈))
4336, 42sseldd 3588 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈))
44 prssi 4326 . . . . . . . . . . . . . . . . 17 ((𝑌𝑉𝑇𝑉) → {𝑌, 𝑇} ⊆ 𝑉)
4521, 10, 44syl2anc 692 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌, 𝑇} ⊆ 𝑉)
46 snsspr1 4318 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑌, 𝑇}
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ {𝑌, 𝑇})
488, 2lspss 18916 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ {𝑌, 𝑇} ⊆ 𝑉 ∧ {𝑌} ⊆ {𝑌, 𝑇}) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
496, 45, 47, 48syl3anc 1323 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
50493ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
51 simp3 1061 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}))
5250, 51sseqtrd 3625 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑤}))
53 eqid 2621 . . . . . . . . . . . . . 14 (LSSum‘𝑈) = (LSSum‘𝑈)
5453lsmless2 18007 . . . . . . . . . . . . 13 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑤})) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
5540, 43, 52, 54syl3anc 1323 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
568, 2, 53, 6, 30, 21lsmpr 19021 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
57563ad2ant1 1080 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
58 prcom 4242 . . . . . . . . . . . . . 14 {𝑤, 𝑋} = {𝑋, 𝑤}
5958fveq2i 6156 . . . . . . . . . . . . 13 (𝑁‘{𝑤, 𝑋}) = (𝑁‘{𝑋, 𝑤})
608, 2, 53, 34, 31, 29lsmpr 19021 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑤}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
6159, 60syl5eq 2667 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤, 𝑋}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
6255, 57, 613sstr4d 3632 . . . . . . . . . . 11 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑤, 𝑋}))
6362ssneld 3589 . . . . . . . . . 10 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑋}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
648, 1, 2lspsncl 18909 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
656, 9, 64syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
66653ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
6736, 66sseldd 3588 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑈))
68 snsspr2 4319 . . . . . . . . . . . . . . . . 17 {𝑇} ⊆ {𝑌, 𝑇}
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑇} ⊆ {𝑌, 𝑇})
708, 2lspss 18916 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ {𝑌, 𝑇} ⊆ 𝑉 ∧ {𝑇} ⊆ {𝑌, 𝑇}) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
716, 45, 69, 70syl3anc 1323 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
72713ad2ant1 1080 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
7372, 51sseqtrd 3625 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑤}))
7453lsmless2 18007 . . . . . . . . . . . . 13 (((𝑁‘{𝑍}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑤})) → ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})) ⊆ ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
7567, 43, 73, 74syl3anc 1323 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})) ⊆ ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
768, 2, 53, 6, 9, 10lsmpr 19021 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑍, 𝑇}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})))
77763ad2ant1 1080 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑇}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})))
78 prcom 4242 . . . . . . . . . . . . . 14 {𝑤, 𝑍} = {𝑍, 𝑤}
7978fveq2i 6156 . . . . . . . . . . . . 13 (𝑁‘{𝑤, 𝑍}) = (𝑁‘{𝑍, 𝑤})
808, 2, 53, 34, 32, 29lsmpr 19021 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑤}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
8179, 80syl5eq 2667 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤, 𝑍}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
8275, 77, 813sstr4d 3632 . . . . . . . . . . 11 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑇}) ⊆ (𝑁‘{𝑤, 𝑍}))
8382ssneld 3589 . . . . . . . . . 10 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
8463, 83anim12d 585 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8584reximdv 3011 . . . . . . . 8 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8633, 85mpd 15 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
8786rexlimdv3a 3027 . . . . . 6 (𝜑 → (∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8887adantr 481 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8927, 88mpd 15 . . . 4 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
903, 4, 8, 2, 5, 21, 30, 10dvh3dim2 36252 . . . . . 6 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})))
9190adantr 481 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})))
92 simpr 477 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}))
93 prcom 4242 . . . . . . . . . . . 12 {𝑌, 𝑋} = {𝑋, 𝑌}
9493fveq2i 6156 . . . . . . . . . . 11 (𝑁‘{𝑌, 𝑋}) = (𝑁‘{𝑋, 𝑌})
9594eleq2i 2690 . . . . . . . . . 10 (𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
9695notbii 310 . . . . . . . . 9 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
9796a1i 11 . . . . . . . 8 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
98 eleq2 2687 . . . . . . . . 9 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (𝑧 ∈ (𝑁‘{𝑌, 𝑇}) ↔ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
9998notbid 308 . . . . . . . 8 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10097, 99anbi12d 746 . . . . . . 7 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → ((¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
10192, 100syl 17 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ((¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
102101rexbidv 3046 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
10391, 102mpbid 222 . . . 4 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10489, 103jaodan 825 . . 3 ((𝜑 ∧ ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10518, 104syldan 487 . 2 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
1063, 4, 8, 2, 5, 21, 30, 10dvh3dim2 36252 . . . 4 (𝜑 → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})))
107106adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})))
108 simpl1l 1110 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝜑)
109108, 6syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LMod)
110 simpl2 1063 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤𝑉)
111108, 21syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌𝑉)
112 eqid 2621 . . . . . . . 8 (+g𝑈) = (+g𝑈)
1138, 112lmodvacl 18809 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
114109, 110, 111, 113syl3anc 1323 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
1158, 1, 2, 6, 30, 21lspprcl 18910 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
116108, 115syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1178, 2, 6, 30, 21lspprid2 18930 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
118108, 117syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
119 simpl3l 1114 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}))
12094eleq2i 2690 . . . . . . . 8 (𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
121119, 120sylnib 318 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
1228, 112, 1, 109, 116, 118, 110, 121lssvancl2 18878 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))
123108, 11syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
124 simpr 477 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))
125 simpl1r 1111 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
1268, 112, 1, 109, 123, 124, 111, 125lssvancl1 18877 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))
127 eleq1 2686 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
128127notbid 308 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
129 eleq1 2686 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇})))
130129notbid 308 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇})))
131128, 130anbi12d 746 . . . . . . 7 (𝑧 = (𝑤(+g𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})) ↔ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))))
132131rspcev 3298 . . . . . 6 (((𝑤(+g𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
133114, 122, 126, 132syl12anc 1321 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
134 simpl2 1063 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤𝑉)
135 simpl3l 1114 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}))
136135, 120sylnib 318 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
137 simpr 477 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))
138 eleq1 2686 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
139138notbid 308 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
140 eleq1 2686 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})))
141140notbid 308 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})))
142139, 141anbi12d 746 . . . . . . 7 (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))))
143142rspcev 3298 . . . . . 6 ((𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
144134, 136, 137, 143syl12anc 1321 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
145133, 144pm2.61dan 831 . . . 4 (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
146145rexlimdv3a 3027 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
147107, 146mpd 15 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
148105, 147pm2.61dan 831 1 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  wss 3559  wpss 3560  {csn 4153  {cpr 4155  cfv 5852  (class class class)co 6610  Basecbs 15792  +gcplusg 15873  SubGrpcsubg 17520  LSSumclsm 17981  LModclmod 18795  LSubSpclss 18864  LSpanclspn 18903  LVecclvec 19034  HLchlt 34152  LHypclh 34785  DVecHcdvh 35882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-riotaBAD 33754
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-undef 7351  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-sca 15889  df-vsca 15890  df-0g 16034  df-preset 16860  df-poset 16878  df-plt 16890  df-lub 16906  df-glb 16907  df-join 16908  df-meet 16909  df-p0 16971  df-p1 16972  df-lat 16978  df-clat 17040  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-cntz 17682  df-lsm 17983  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-dvr 18615  df-drng 18681  df-lmod 18797  df-lss 18865  df-lsp 18904  df-lvec 19035  df-lsatoms 33778  df-oposet 33978  df-ol 33980  df-oml 33981  df-covers 34068  df-ats 34069  df-atl 34100  df-cvlat 34124  df-hlat 34153  df-llines 34299  df-lplanes 34300  df-lvols 34301  df-lines 34302  df-psubsp 34304  df-pmap 34305  df-padd 34597  df-lhyp 34789  df-laut 34790  df-ldil 34905  df-ltrn 34906  df-trl 34961  df-tgrp 35546  df-tendo 35558  df-edring 35560  df-dveca 35806  df-disoa 35833  df-dvech 35883  df-dib 35943  df-dic 35977  df-dih 36033  df-doch 36152  df-djh 36199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator