Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim3N Structured version   Visualization version   GIF version

Theorem dvh3dim3N 38579
Description: There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 38578 everywhere. If this one is needed, make dvh3dim2 38578 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
dvh3dim3.t (𝜑𝑇𝑉)
Assertion
Ref Expression
dvh3dim3N (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧   𝑧,𝑇
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim3N
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
3 dvh3dim.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 dvh3dim.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dvh3dim.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5dvhlmod 38240 . . . . . 6 (𝜑𝑈 ∈ LMod)
76adantr 483 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LMod)
8 dvh3dim.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 dvh3dim2.z . . . . . . 7 (𝜑𝑍𝑉)
10 dvh3dim3.t . . . . . . 7 (𝜑𝑇𝑉)
118, 1, 2, 6, 9, 10lspprcl 19744 . . . . . 6 (𝜑 → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
1211adantr 483 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
13 simpr 487 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
148, 2, 6, 9, 10lspprid2 19764 . . . . . 6 (𝜑𝑇 ∈ (𝑁‘{𝑍, 𝑇}))
1514adantr 483 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑍, 𝑇}))
161, 2, 7, 12, 13, 15lspprss 19758 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ⊆ (𝑁‘{𝑍, 𝑇}))
17 sspss 4076 . . . 4 ((𝑁‘{𝑌, 𝑇}) ⊆ (𝑁‘{𝑍, 𝑇}) ↔ ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})))
1816, 17sylib 220 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})))
193, 4, 5dvhlvec 38239 . . . . . . 7 (𝜑𝑈 ∈ LVec)
2019adantr 483 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec)
21 dvh3dim.y . . . . . . . 8 (𝜑𝑌𝑉)
228, 1, 2, 6, 21, 10lspprcl 19744 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑇}) ∈ (LSubSp‘𝑈))
2322adantr 483 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ∈ (LSubSp‘𝑈))
249adantr 483 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑍𝑉)
2510adantr 483 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑇𝑉)
26 simpr 487 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}))
278, 1, 2, 20, 23, 24, 25, 26lspprat 19919 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → ∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}))
2853ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simp2 1133 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑤𝑉)
30 dvh3dim.x . . . . . . . . . 10 (𝜑𝑋𝑉)
31303ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑋𝑉)
3293ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑍𝑉)
333, 4, 8, 2, 28, 29, 31, 32dvh3dim2 38578 . . . . . . . 8 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})))
3463ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑈 ∈ LMod)
351lsssssubg 19724 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
378, 1, 2lspsncl 19743 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
386, 30, 37syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
39383ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
4036, 39sseldd 3968 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑈))
418, 1, 2lspsncl 19743 . . . . . . . . . . . . . . 15 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑁‘{𝑤}) ∈ (LSubSp‘𝑈))
4234, 29, 41syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ∈ (LSubSp‘𝑈))
4336, 42sseldd 3968 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈))
44 prssi 4748 . . . . . . . . . . . . . . . . 17 ((𝑌𝑉𝑇𝑉) → {𝑌, 𝑇} ⊆ 𝑉)
4521, 10, 44syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌, 𝑇} ⊆ 𝑉)
46 snsspr1 4741 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑌, 𝑇}
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ {𝑌, 𝑇})
488, 2lspss 19750 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ {𝑌, 𝑇} ⊆ 𝑉 ∧ {𝑌} ⊆ {𝑌, 𝑇}) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
496, 45, 47, 48syl3anc 1367 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
50493ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
51 simp3 1134 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}))
5250, 51sseqtrd 4007 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑤}))
53 eqid 2821 . . . . . . . . . . . . . 14 (LSSum‘𝑈) = (LSSum‘𝑈)
5453lsmless2 18780 . . . . . . . . . . . . 13 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑤})) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
5540, 43, 52, 54syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
568, 2, 53, 6, 30, 21lsmpr 19855 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
57563ad2ant1 1129 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
58 prcom 4662 . . . . . . . . . . . . . 14 {𝑤, 𝑋} = {𝑋, 𝑤}
5958fveq2i 6668 . . . . . . . . . . . . 13 (𝑁‘{𝑤, 𝑋}) = (𝑁‘{𝑋, 𝑤})
608, 2, 53, 34, 31, 29lsmpr 19855 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑤}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
6159, 60syl5eq 2868 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤, 𝑋}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
6255, 57, 613sstr4d 4014 . . . . . . . . . . 11 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑤, 𝑋}))
6362ssneld 3969 . . . . . . . . . 10 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑋}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
648, 1, 2lspsncl 19743 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
656, 9, 64syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
66653ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
6736, 66sseldd 3968 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑈))
68 snsspr2 4742 . . . . . . . . . . . . . . . . 17 {𝑇} ⊆ {𝑌, 𝑇}
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑇} ⊆ {𝑌, 𝑇})
708, 2lspss 19750 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ {𝑌, 𝑇} ⊆ 𝑉 ∧ {𝑇} ⊆ {𝑌, 𝑇}) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
716, 45, 69, 70syl3anc 1367 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
72713ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
7372, 51sseqtrd 4007 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑤}))
7453lsmless2 18780 . . . . . . . . . . . . 13 (((𝑁‘{𝑍}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑤})) → ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})) ⊆ ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
7567, 43, 73, 74syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})) ⊆ ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
768, 2, 53, 6, 9, 10lsmpr 19855 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑍, 𝑇}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})))
77763ad2ant1 1129 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑇}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})))
78 prcom 4662 . . . . . . . . . . . . . 14 {𝑤, 𝑍} = {𝑍, 𝑤}
7978fveq2i 6668 . . . . . . . . . . . . 13 (𝑁‘{𝑤, 𝑍}) = (𝑁‘{𝑍, 𝑤})
808, 2, 53, 34, 32, 29lsmpr 19855 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑤}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
8179, 80syl5eq 2868 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤, 𝑍}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
8275, 77, 813sstr4d 4014 . . . . . . . . . . 11 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑇}) ⊆ (𝑁‘{𝑤, 𝑍}))
8382ssneld 3969 . . . . . . . . . 10 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
8463, 83anim12d 610 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8584reximdv 3273 . . . . . . . 8 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8633, 85mpd 15 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
8786rexlimdv3a 3286 . . . . . 6 (𝜑 → (∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8887adantr 483 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8927, 88mpd 15 . . . 4 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
903, 4, 8, 2, 5, 21, 30, 10dvh3dim2 38578 . . . . . 6 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})))
9190adantr 483 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})))
92 simpr 487 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}))
93 prcom 4662 . . . . . . . . . . . 12 {𝑌, 𝑋} = {𝑋, 𝑌}
9493fveq2i 6668 . . . . . . . . . . 11 (𝑁‘{𝑌, 𝑋}) = (𝑁‘{𝑋, 𝑌})
9594eleq2i 2904 . . . . . . . . . 10 (𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
9695notbii 322 . . . . . . . . 9 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
9796a1i 11 . . . . . . . 8 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
98 eleq2 2901 . . . . . . . . 9 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (𝑧 ∈ (𝑁‘{𝑌, 𝑇}) ↔ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
9998notbid 320 . . . . . . . 8 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10097, 99anbi12d 632 . . . . . . 7 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → ((¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
10192, 100syl 17 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ((¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
102101rexbidv 3297 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
10391, 102mpbid 234 . . . 4 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10489, 103jaodan 954 . . 3 ((𝜑 ∧ ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10518, 104syldan 593 . 2 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
1063, 4, 8, 2, 5, 21, 30, 10dvh3dim2 38578 . . . 4 (𝜑 → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})))
107106adantr 483 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})))
108 simpl1l 1220 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝜑)
109108, 6syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LMod)
110 simpl2 1188 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤𝑉)
111108, 21syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌𝑉)
112 eqid 2821 . . . . . . . 8 (+g𝑈) = (+g𝑈)
1138, 112lmodvacl 19642 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
114109, 110, 111, 113syl3anc 1367 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
1158, 1, 2, 6, 30, 21lspprcl 19744 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
116108, 115syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1178, 2, 6, 30, 21lspprid2 19764 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
118108, 117syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
119 simpl3l 1224 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}))
12094eleq2i 2904 . . . . . . . 8 (𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
121119, 120sylnib 330 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
1228, 112, 1, 109, 116, 118, 110, 121lssvancl2 19711 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))
123108, 11syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
124 simpr 487 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))
125 simpl1r 1221 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
1268, 112, 1, 109, 123, 124, 111, 125lssvancl1 19710 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))
127 eleq1 2900 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
128127notbid 320 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
129 eleq1 2900 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇})))
130129notbid 320 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇})))
131128, 130anbi12d 632 . . . . . . 7 (𝑧 = (𝑤(+g𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})) ↔ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))))
132131rspcev 3623 . . . . . 6 (((𝑤(+g𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
133114, 122, 126, 132syl12anc 834 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
134 simpl2 1188 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤𝑉)
135 simpl3l 1224 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}))
136135, 120sylnib 330 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
137 simpr 487 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))
138 eleq1 2900 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
139138notbid 320 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
140 eleq1 2900 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})))
141140notbid 320 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})))
142139, 141anbi12d 632 . . . . . . 7 (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))))
143142rspcev 3623 . . . . . 6 ((𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
144134, 136, 137, 143syl12anc 834 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
145133, 144pm2.61dan 811 . . . 4 (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
146145rexlimdv3a 3286 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
147107, 146mpd 15 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
148105, 147pm2.61dan 811 1 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  wss 3936  wpss 3937  {csn 4561  {cpr 4563  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  SubGrpcsubg 18267  LSSumclsm 18753  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737  LVecclvec 19868  HLchlt 36480  LHypclh 37114  DVecHcdvh 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-0g 16709  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869  df-lsatoms 36106  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289  df-tgrp 37873  df-tendo 37885  df-edring 37887  df-dveca 38133  df-disoa 38159  df-dvech 38209  df-dib 38269  df-dic 38303  df-dih 38359  df-doch 38478  df-djh 38525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator