Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhfmulr Structured version   Visualization version   GIF version

Theorem dvhfmulr 35851
 Description: Ring multiplication operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhfmul.h 𝐻 = (LHyp‘𝐾)
dvhfmul.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhfmul.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhfmul.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhfmul.f 𝐹 = (Scalar‘𝑈)
dvhfmul.m · = (.r𝐹)
Assertion
Ref Expression
dvhfmulr ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝐾,𝑠,𝑡   𝑊,𝑠,𝑡
Allowed substitution hints:   𝑇(𝑡,𝑠)   · (𝑡,𝑠)   𝑈(𝑡,𝑠)   𝐹(𝑡,𝑠)   𝐻(𝑡,𝑠)   𝑉(𝑡,𝑠)

Proof of Theorem dvhfmulr
StepHypRef Expression
1 dvhfmul.m . . 3 · = (.r𝐹)
2 dvhfmul.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2621 . . . . 5 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
4 dvhfmul.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dvhfmul.f . . . . 5 𝐹 = (Scalar‘𝑈)
62, 3, 4, 5dvhsca 35848 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊))
76fveq2d 6152 . . 3 ((𝐾𝑉𝑊𝐻) → (.r𝐹) = (.r‘((EDRing‘𝐾)‘𝑊)))
81, 7syl5eq 2667 . 2 ((𝐾𝑉𝑊𝐻) → · = (.r‘((EDRing‘𝐾)‘𝑊)))
9 dvhfmul.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 dvhfmul.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
11 eqid 2621 . . 3 (.r‘((EDRing‘𝐾)‘𝑊)) = (.r‘((EDRing‘𝐾)‘𝑊))
122, 9, 10, 3, 11erngfmul 35570 . 2 ((𝐾𝑉𝑊𝐻) → (.r‘((EDRing‘𝐾)‘𝑊)) = (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡)))
138, 12eqtrd 2655 1 ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ∘ ccom 5078  ‘cfv 5847   ↦ cmpt2 6606  .rcmulr 15863  Scalarcsca 15865  LHypclh 34747  LTrncltrn 34864  TEndoctendo 35517  EDRingcedring 35518  DVecHcdvh 35844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-edring 35522  df-dvech 35845 This theorem is referenced by:  dvhmulr  35852
 Copyright terms: Public domain W3C validator