Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhlveclem Structured version   Visualization version   GIF version

Theorem dvhlveclem 36714
Description: Lemma for dvhlvec 36715. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does 𝜑 method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b 𝐵 = (Base‘𝐾)
dvhgrp.h 𝐻 = (LHyp‘𝐾)
dvhgrp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhgrp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhgrp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhgrp.d 𝐷 = (Scalar‘𝑈)
dvhgrp.p = (+g𝐷)
dvhgrp.a + = (+g𝑈)
dvhgrp.o 0 = (0g𝐷)
dvhgrp.i 𝐼 = (invg𝐷)
dvhlvec.m × = (.r𝐷)
dvhlvec.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dvhlveclem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)

Proof of Theorem dvhlveclem
Dummy variables 𝑡 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvhgrp.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhgrp.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhgrp.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2651 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
61, 2, 3, 4, 5dvhvbase 36693 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (𝑇 × 𝐸))
76eqcomd 2657 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 × 𝐸) = (Base‘𝑈))
8 dvhgrp.a . . . 4 + = (+g𝑈)
98a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝑈))
10 dvhgrp.d . . . 4 𝐷 = (Scalar‘𝑈)
1110a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = (Scalar‘𝑈))
12 dvhlvec.s . . . 4 · = ( ·𝑠𝑈)
1312a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → · = ( ·𝑠𝑈))
14 eqid 2651 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
151, 3, 4, 10, 14dvhbase 36689 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
1615eqcomd 2657 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
17 dvhgrp.p . . . 4 = (+g𝐷)
1817a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g𝐷))
19 dvhlvec.m . . . 4 × = (.r𝐷)
2019a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → × = (.r𝐷))
21 eqid 2651 . . . . . 6 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
221, 21, 4, 10dvhsca 36688 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 = ((EDRing‘𝐾)‘𝑊))
2322fveq2d 6233 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = (1r‘((EDRing‘𝐾)‘𝑊)))
24 eqid 2651 . . . . 5 (1r‘((EDRing‘𝐾)‘𝑊)) = (1r‘((EDRing‘𝐾)‘𝑊))
251, 2, 21, 24erng1r 36600 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r‘((EDRing‘𝐾)‘𝑊)) = ( I ↾ 𝑇))
2623, 25eqtr2d 2686 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
271, 21erngdv 36598 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing)
2822, 27eqeltrd 2730 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)
29 drngring 18802 . . . 4 (𝐷 ∈ DivRing → 𝐷 ∈ Ring)
3028, 29syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
31 dvhgrp.b . . . 4 𝐵 = (Base‘𝐾)
32 dvhgrp.o . . . 4 0 = (0g𝐷)
33 dvhgrp.i . . . 4 𝐼 = (invg𝐷)
3431, 1, 2, 3, 4, 10, 17, 8, 32, 33dvhgrp 36713 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Grp)
351, 2, 3, 4, 12dvhvscacl 36709 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
36353impb 1279 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡 ∈ (𝑇 × 𝐸)) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
37 simpl 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
38 simpr1 1087 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑠𝐸)
39 simpr2 1088 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑡 ∈ (𝑇 × 𝐸))
40 xp1st 7242 . . . . . . . 8 (𝑡 ∈ (𝑇 × 𝐸) → (1st𝑡) ∈ 𝑇)
4139, 40syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑡) ∈ 𝑇)
42 simpr3 1089 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑓 ∈ (𝑇 × 𝐸))
43 xp1st 7242 . . . . . . . 8 (𝑓 ∈ (𝑇 × 𝐸) → (1st𝑓) ∈ 𝑇)
4442, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑓) ∈ 𝑇)
451, 2, 3tendospdi1 36626 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (1st𝑡) ∈ 𝑇 ∧ (1st𝑓) ∈ 𝑇)) → (𝑠‘((1st𝑡) ∘ (1st𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
4637, 38, 41, 44, 45syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘((1st𝑡) ∘ (1st𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
471, 2, 3, 4, 10, 8, 17dvhvadd 36698 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) = ⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩)
48473adantr1 1240 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) = ⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩)
4948fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 + 𝑓)) = (1st ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩))
50 fvex 6239 . . . . . . . . . 10 (1st𝑡) ∈ V
51 fvex 6239 . . . . . . . . . 10 (1st𝑓) ∈ V
5250, 51coex 7160 . . . . . . . . 9 ((1st𝑡) ∘ (1st𝑓)) ∈ V
53 ovex 6718 . . . . . . . . 9 ((2nd𝑡) (2nd𝑓)) ∈ V
5452, 53op1st 7218 . . . . . . . 8 (1st ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩) = ((1st𝑡) ∘ (1st𝑓))
5549, 54syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 + 𝑓)) = ((1st𝑡) ∘ (1st𝑓)))
5655fveq2d 6233 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘(1st ‘(𝑡 + 𝑓))) = (𝑠‘((1st𝑡) ∘ (1st𝑓))))
571, 2, 3, 4, 12dvhvsca 36707 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) = ⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩)
58573adantr3 1242 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) = ⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩)
5958fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑡)) = (1st ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩))
60 fvex 6239 . . . . . . . . 9 (𝑠‘(1st𝑡)) ∈ V
61 vex 3234 . . . . . . . . . 10 𝑠 ∈ V
62 fvex 6239 . . . . . . . . . 10 (2nd𝑡) ∈ V
6361, 62coex 7160 . . . . . . . . 9 (𝑠 ∘ (2nd𝑡)) ∈ V
6460, 63op1st 7218 . . . . . . . 8 (1st ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩) = (𝑠‘(1st𝑡))
6559, 64syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑡)) = (𝑠‘(1st𝑡)))
661, 2, 3, 4, 12dvhvsca 36707 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
67663adantr2 1241 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
6867fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
69 fvex 6239 . . . . . . . . 9 (𝑠‘(1st𝑓)) ∈ V
70 fvex 6239 . . . . . . . . . 10 (2nd𝑓) ∈ V
7161, 70coex 7160 . . . . . . . . 9 (𝑠 ∘ (2nd𝑓)) ∈ V
7269, 71op1st 7218 . . . . . . . 8 (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠‘(1st𝑓))
7368, 72syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (𝑠‘(1st𝑓)))
7465, 73coeq12d 5319 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))) = ((𝑠‘(1st𝑡)) ∘ (𝑠‘(1st𝑓))))
7546, 56, 743eqtr4d 2695 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠‘(1st ‘(𝑡 + 𝑓))) = ((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))))
7630adantr 480 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝐷 ∈ Ring)
7716adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝐸 = (Base‘𝐷))
7838, 77eleqtrd 2732 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → 𝑠 ∈ (Base‘𝐷))
79 xp2nd 7243 . . . . . . . . . 10 (𝑡 ∈ (𝑇 × 𝐸) → (2nd𝑡) ∈ 𝐸)
8039, 79syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑡) ∈ 𝐸)
8180, 77eleqtrd 2732 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑡) ∈ (Base‘𝐷))
82 xp2nd 7243 . . . . . . . . . 10 (𝑓 ∈ (𝑇 × 𝐸) → (2nd𝑓) ∈ 𝐸)
8342, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ 𝐸)
8483, 77eleqtrd 2732 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ (Base‘𝐷))
8514, 17, 19ringdi 18612 . . . . . . . 8 ((𝐷 ∈ Ring ∧ (𝑠 ∈ (Base‘𝐷) ∧ (2nd𝑡) ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))))
8676, 78, 81, 84, 85syl13anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))))
8714, 17ringacl 18624 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (2nd𝑡) ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷)) → ((2nd𝑡) (2nd𝑓)) ∈ (Base‘𝐷))
8876, 81, 84, 87syl3anc 1366 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd𝑡) (2nd𝑓)) ∈ (Base‘𝐷))
8988, 77eleqtrrd 2733 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd𝑡) (2nd𝑓)) ∈ 𝐸)
901, 2, 3, 4, 10, 19dvhmulr 36692 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ((2nd𝑡) (2nd𝑓)) ∈ 𝐸)) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
9137, 38, 89, 90syl12anc 1364 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × ((2nd𝑡) (2nd𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
921, 2, 3, 4, 10, 19dvhmulr 36692 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (2nd𝑡) ∈ 𝐸)) → (𝑠 × (2nd𝑡)) = (𝑠 ∘ (2nd𝑡)))
9337, 38, 80, 92syl12anc 1364 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑡)) = (𝑠 ∘ (2nd𝑡)))
941, 2, 3, 4, 10, 19dvhmulr 36692 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
9537, 38, 83, 94syl12anc 1364 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
9693, 95oveq12d 6708 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × (2nd𝑡)) (𝑠 × (2nd𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
9786, 91, 963eqtr3d 2693 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ ((2nd𝑡) (2nd𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
9848fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 + 𝑓)) = (2nd ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩))
9952, 53op2nd 7219 . . . . . . . 8 (2nd ‘⟨((1st𝑡) ∘ (1st𝑓)), ((2nd𝑡) (2nd𝑓))⟩) = ((2nd𝑡) (2nd𝑓))
10098, 99syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 + 𝑓)) = ((2nd𝑡) (2nd𝑓)))
101100coeq2d 5317 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ (2nd ‘(𝑡 + 𝑓))) = (𝑠 ∘ ((2nd𝑡) (2nd𝑓))))
10258fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑡)) = (2nd ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩))
10360, 63op2nd 7219 . . . . . . . 8 (2nd ‘⟨(𝑠‘(1st𝑡)), (𝑠 ∘ (2nd𝑡))⟩) = (𝑠 ∘ (2nd𝑡))
104102, 103syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑡)) = (𝑠 ∘ (2nd𝑡)))
10567fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
10669, 71op2nd 7219 . . . . . . . 8 (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠 ∘ (2nd𝑓))
107105, 106syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (𝑠 ∘ (2nd𝑓)))
108104, 107oveq12d 6708 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓))) = ((𝑠 ∘ (2nd𝑡)) (𝑠 ∘ (2nd𝑓))))
10997, 101, 1083eqtr4d 2695 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 ∘ (2nd ‘(𝑡 + 𝑓))) = ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓))))
11075, 109opeq12d 4441 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩ = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
1111, 2, 3, 4, 10, 17, 8dvhvaddcl 36701 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))
1121113adantr1 1240 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))
1131, 2, 3, 4, 12dvhvsca 36707 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡 + 𝑓) ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩)
11437, 38, 112, 113syl12anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ⟨(𝑠‘(1st ‘(𝑡 + 𝑓))), (𝑠 ∘ (2nd ‘(𝑡 + 𝑓)))⟩)
115353adantr3 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑡) ∈ (𝑇 × 𝐸))
1161, 2, 3, 4, 12dvhvscacl 36709 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1171163adantr2 1241 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1181, 2, 3, 4, 10, 8, 17dvhvadd 36698 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 · 𝑡) ∈ (𝑇 × 𝐸) ∧ (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
11937, 115, 117, 118syl12anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑡) + (𝑠 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑡)) ∘ (1st ‘(𝑠 · 𝑓))), ((2nd ‘(𝑠 · 𝑡)) (2nd ‘(𝑠 · 𝑓)))⟩)
120110, 114, 1193eqtr4d 2695 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡 ∈ (𝑇 × 𝐸) ∧ 𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 + 𝑓)) = ((𝑠 · 𝑡) + (𝑠 · 𝑓)))
121 simpl 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
122 simpr1 1087 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑠𝐸)
123 simpr2 1088 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑡𝐸)
124 simpr3 1089 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑓 ∈ (𝑇 × 𝐸))
125124, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st𝑓) ∈ 𝑇)
126 eqid 2651 . . . . . . . 8 (+g‘((EDRing‘𝐾)‘𝑊)) = (+g‘((EDRing‘𝐾)‘𝑊))
1271, 2, 3, 21, 126erngplus2 36409 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸 ∧ (1st𝑓) ∈ 𝑇)) → ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
128121, 122, 123, 125, 127syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
12922fveq2d 6233 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (+g‘((EDRing‘𝐾)‘𝑊)))
13017, 129syl5eq 2697 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (+g‘((EDRing‘𝐾)‘𝑊)))
131130oveqd 6707 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 𝑡) = (𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡))
132131fveq1d 6231 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠 𝑡)‘(1st𝑓)) = ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)))
133132adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡)‘(1st𝑓)) = ((𝑠(+g‘((EDRing‘𝐾)‘𝑊))𝑡)‘(1st𝑓)))
134663adantr2 1241 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
135134fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (1st ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
136135, 72syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑠 · 𝑓)) = (𝑠‘(1st𝑓)))
1371, 2, 3, 4, 12dvhvsca 36707 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
1381373adantr1 1240 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) = ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩)
139138fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 · 𝑓)) = (1st ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
140 fvex 6239 . . . . . . . . 9 (𝑡‘(1st𝑓)) ∈ V
141 vex 3234 . . . . . . . . . 10 𝑡 ∈ V
142141, 70coex 7160 . . . . . . . . 9 (𝑡 ∘ (2nd𝑓)) ∈ V
143140, 142op1st 7218 . . . . . . . 8 (1st ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = (𝑡‘(1st𝑓))
144139, 143syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (1st ‘(𝑡 · 𝑓)) = (𝑡‘(1st𝑓)))
145136, 144coeq12d 5319 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))) = ((𝑠‘(1st𝑓)) ∘ (𝑡‘(1st𝑓))))
146128, 133, 1453eqtr4d 2695 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡)‘(1st𝑓)) = ((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))))
14730adantr 480 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝐷 ∈ Ring)
14816adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝐸 = (Base‘𝐷))
149122, 148eleqtrd 2732 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑠 ∈ (Base‘𝐷))
150123, 148eleqtrd 2732 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → 𝑡 ∈ (Base‘𝐷))
151124, 82syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ 𝐸)
152151, 148eleqtrd 2732 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd𝑓) ∈ (Base‘𝐷))
15314, 17, 19ringdir 18613 . . . . . . . 8 ((𝐷 ∈ Ring ∧ (𝑠 ∈ (Base‘𝐷) ∧ 𝑡 ∈ (Base‘𝐷) ∧ (2nd𝑓) ∈ (Base‘𝐷))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))))
154147, 149, 150, 152, 153syl13anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))))
15514, 17ringacl 18624 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ 𝑠 ∈ (Base‘𝐷) ∧ 𝑡 ∈ (Base‘𝐷)) → (𝑠 𝑡) ∈ (Base‘𝐷))
156147, 149, 150, 155syl3anc 1366 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 𝑡) ∈ (Base‘𝐷))
157156, 148eleqtrrd 2733 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 𝑡) ∈ 𝐸)
1581, 2, 3, 4, 10, 19dvhmulr 36692 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 𝑡) ∘ (2nd𝑓)))
159121, 157, 151, 158syl12anc 1364 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) × (2nd𝑓)) = ((𝑠 𝑡) ∘ (2nd𝑓)))
160121, 122, 151, 94syl12anc 1364 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × (2nd𝑓)) = (𝑠 ∘ (2nd𝑓)))
1611, 2, 3, 4, 10, 19dvhmulr 36692 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ (2nd𝑓) ∈ 𝐸)) → (𝑡 × (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
162121, 123, 151, 161syl12anc 1364 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 × (2nd𝑓)) = (𝑡 ∘ (2nd𝑓)))
163160, 162oveq12d 6708 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × (2nd𝑓)) (𝑡 × (2nd𝑓))) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
164154, 159, 1633eqtr3d 2693 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) ∘ (2nd𝑓)) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
165134fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (2nd ‘⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
166165, 106syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑠 · 𝑓)) = (𝑠 ∘ (2nd𝑓)))
167138fveq2d 6233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 · 𝑓)) = (2nd ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
168140, 142op2nd 7219 . . . . . . . 8 (2nd ‘⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = (𝑡 ∘ (2nd𝑓))
169167, 168syl6eq 2701 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (2nd ‘(𝑡 · 𝑓)) = (𝑡 ∘ (2nd𝑓)))
170166, 169oveq12d 6708 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓))) = ((𝑠 ∘ (2nd𝑓)) (𝑡 ∘ (2nd𝑓))))
171164, 170eqtr4d 2688 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) ∘ (2nd𝑓)) = ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓))))
172146, 171opeq12d 4441 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩ = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
1731, 2, 3, 4, 12dvhvsca 36707 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 𝑡) ∈ 𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩)
174121, 157, 124, 173syl12anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ⟨((𝑠 𝑡)‘(1st𝑓)), ((𝑠 𝑡) ∘ (2nd𝑓))⟩)
1751163adantr2 1241 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · 𝑓) ∈ (𝑇 × 𝐸))
1761, 2, 3, 4, 12dvhvscacl 36709 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))
1771763adantr1 1240 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))
1781, 2, 3, 4, 10, 8, 17dvhvadd 36698 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 · 𝑓) ∈ (𝑇 × 𝐸) ∧ (𝑡 · 𝑓) ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
179121, 175, 177, 178syl12anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 · 𝑓) + (𝑡 · 𝑓)) = ⟨((1st ‘(𝑠 · 𝑓)) ∘ (1st ‘(𝑡 · 𝑓))), ((2nd ‘(𝑠 · 𝑓)) (2nd ‘(𝑡 · 𝑓)))⟩)
180172, 174, 1793eqtr4d 2695 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 𝑡) · 𝑓) = ((𝑠 · 𝑓) + (𝑡 · 𝑓)))
1811, 2, 3tendocoval 36371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸) ∧ (1st𝑓) ∈ 𝑇) → ((𝑠𝑡)‘(1st𝑓)) = (𝑠‘(𝑡‘(1st𝑓))))
182121, 122, 123, 125, 181syl121anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡)‘(1st𝑓)) = (𝑠‘(𝑡‘(1st𝑓))))
183 coass 5692 . . . . . . 7 ((𝑠𝑡) ∘ (2nd𝑓)) = (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))
184183a1i 11 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) ∘ (2nd𝑓)) = (𝑠 ∘ (𝑡 ∘ (2nd𝑓))))
185182, 184opeq12d 4441 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩ = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
1861, 3tendococl 36377 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
187121, 122, 123, 186syl3anc 1366 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠𝑡) ∈ 𝐸)
1881, 2, 3, 4, 12dvhvsca 36707 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑡) ∈ 𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩)
189121, 187, 124, 188syl12anc 1364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = ⟨((𝑠𝑡)‘(1st𝑓)), ((𝑠𝑡) ∘ (2nd𝑓))⟩)
1901, 2, 3tendocl 36372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸 ∧ (1st𝑓) ∈ 𝑇) → (𝑡‘(1st𝑓)) ∈ 𝑇)
191121, 123, 125, 190syl3anc 1366 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡‘(1st𝑓)) ∈ 𝑇)
1921, 3tendococl 36377 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸 ∧ (2nd𝑓) ∈ 𝐸) → (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)
193121, 123, 151, 192syl3anc 1366 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)
1941, 2, 3, 4, 12dvhopvsca 36708 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡‘(1st𝑓)) ∈ 𝑇 ∧ (𝑡 ∘ (2nd𝑓)) ∈ 𝐸)) → (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
195121, 122, 191, 193, 194syl13anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩) = ⟨(𝑠‘(𝑡‘(1st𝑓))), (𝑠 ∘ (𝑡 ∘ (2nd𝑓)))⟩)
196185, 189, 1953eqtr4d 2695 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠𝑡) · 𝑓) = (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
1971, 2, 3, 4, 10, 19dvhmulr 36692 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠 × 𝑡) = (𝑠𝑡))
1981973adantr3 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 × 𝑡) = (𝑠𝑡))
199198oveq1d 6705 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × 𝑡) · 𝑓) = ((𝑠𝑡) · 𝑓))
200138oveq2d 6706 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → (𝑠 · (𝑡 · 𝑓)) = (𝑠 · ⟨(𝑡‘(1st𝑓)), (𝑡 ∘ (2nd𝑓))⟩))
201196, 199, 2003eqtr4d 2695 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑓 ∈ (𝑇 × 𝐸))) → ((𝑠 × 𝑡) · 𝑓) = (𝑠 · (𝑡 · 𝑓)))
202 xp1st 7242 . . . . . . 7 (𝑠 ∈ (𝑇 × 𝐸) → (1st𝑠) ∈ 𝑇)
203202adantl 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (1st𝑠) ∈ 𝑇)
204 tendospid 36623 . . . . . 6 ((1st𝑠) ∈ 𝑇 → (( I ↾ 𝑇)‘(1st𝑠)) = (1st𝑠))
205203, 204syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇)‘(1st𝑠)) = (1st𝑠))
206 xp2nd 7243 . . . . . . 7 (𝑠 ∈ (𝑇 × 𝐸) → (2nd𝑠) ∈ 𝐸)
2071, 2, 3tendof 36368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑠) ∈ 𝐸) → (2nd𝑠):𝑇𝑇)
208206, 207sylan2 490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (2nd𝑠):𝑇𝑇)
209 fcoi2 6117 . . . . . 6 ((2nd𝑠):𝑇𝑇 → (( I ↾ 𝑇) ∘ (2nd𝑠)) = (2nd𝑠))
210208, 209syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) ∘ (2nd𝑠)) = (2nd𝑠))
211205, 210opeq12d 4441 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩ = ⟨(1st𝑠), (2nd𝑠)⟩)
2121, 2, 3tendoidcl 36374 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
213212anim1i 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) ∈ 𝐸𝑠 ∈ (𝑇 × 𝐸)))
2141, 2, 3, 4, 12dvhvsca 36707 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠 ∈ (𝑇 × 𝐸))) → (( I ↾ 𝑇) · 𝑠) = ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩)
215213, 214syldan 486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) · 𝑠) = ⟨(( I ↾ 𝑇)‘(1st𝑠)), (( I ↾ 𝑇) ∘ (2nd𝑠))⟩)
216 1st2nd2 7249 . . . . 5 (𝑠 ∈ (𝑇 × 𝐸) → 𝑠 = ⟨(1st𝑠), (2nd𝑠)⟩)
217216adantl 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → 𝑠 = ⟨(1st𝑠), (2nd𝑠)⟩)
218211, 215, 2173eqtr4d 2695 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ (𝑇 × 𝐸)) → (( I ↾ 𝑇) · 𝑠) = 𝑠)
2197, 9, 11, 13, 16, 18, 20, 26, 30, 34, 36, 120, 180, 201, 218islmodd 18917 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
22010islvec 19152 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ 𝐷 ∈ DivRing))
221219, 28, 220sylanbrc 699 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cop 4216   I cid 5052   × cxp 5141  cres 5145  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147  invgcminusg 17470  1rcur 18547  Ringcrg 18593  DivRingcdr 18795  LModclmod 18911  LVecclvec 19150  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  TEndoctendo 36357  EDRingcedring 36358  DVecHcdvh 36684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-undef 7444  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-0g 16149  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-lmod 18913  df-lvec 19151  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764  df-tendo 36360  df-edring 36362  df-dvech 36685
This theorem is referenced by:  dvhlvec  36715
  Copyright terms: Public domain W3C validator