Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Structured version   Visualization version   GIF version

Theorem dvhopN 38134
Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by ⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩, 𝑈, 𝐹, 𝑂. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 𝐹, 𝑂 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b 𝐵 = (Base‘𝐾)
dvhop.h 𝐻 = (LHyp‘𝐾)
dvhop.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhop.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhop.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
dvhop.a 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
dvhop.s 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
dvhop.o 𝑂 = (𝑐𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dvhopN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨𝐹, 𝑈⟩ = (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)))
Distinct variable groups:   𝐵,𝑐   𝑎,𝑏,𝑓,𝑔,𝑠,𝐸   𝐻,𝑐   𝐾,𝑐   𝑃,𝑓,𝑔   𝑎,𝑐,𝑇,𝑏,𝑓,𝑔,𝑠   𝑊,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐵(𝑓,𝑔,𝑠,𝑎,𝑏)   𝑃(𝑠,𝑎,𝑏,𝑐)   𝑆(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝑈(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐸(𝑐)   𝐹(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐻(𝑓,𝑔,𝑠,𝑎,𝑏)   𝐾(𝑓,𝑔,𝑠,𝑎,𝑏)   𝑂(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝑊(𝑓,𝑔,𝑠)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝑈𝐸)
2 dvhop.b . . . . . . 7 𝐵 = (Base‘𝐾)
3 dvhop.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 dvhop.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 37168 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
65adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ( I ↾ 𝐵) ∈ 𝑇)
7 dvhop.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
83, 4, 7tendoidcl 37787 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
98adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ( I ↾ 𝑇) ∈ 𝐸)
10 dvhop.s . . . . . 6 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
1110dvhopspN 38133 . . . . 5 ((𝑈𝐸 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩)
121, 6, 9, 11syl12anc 832 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩)
132, 3, 7tendoid 37791 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
1413adantrl 712 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
153, 4, 7tendo1mulr 37789 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
1615adantrl 712 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
1714, 16opeq12d 4805 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩ = ⟨( I ↾ 𝐵), 𝑈⟩)
1812, 17eqtrd 2856 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨( I ↾ 𝐵), 𝑈⟩)
1918oveq2d 7161 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)) = (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩))
20 simprl 767 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝐹𝑇)
21 dvhop.o . . . . 5 𝑂 = (𝑐𝑇 ↦ ( I ↾ 𝐵))
222, 3, 4, 7, 21tendo0cl 37808 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2322adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝑂𝐸)
24 dvhop.a . . . 4 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
2524dvhopaddN 38132 . . 3 (((𝐹𝑇𝑂𝐸) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩) = ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩)
2620, 23, 6, 1, 25syl22anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩) = ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩)
272, 3, 4ltrn1o 37142 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
2827adantrr 713 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝐹:𝐵1-1-onto𝐵)
29 f1of 6609 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
30 fcoi1 6546 . . . 4 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
3128, 29, 303syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
32 dvhop.p . . . . 5 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
332, 3, 4, 7, 21, 32tendo0pl 37809 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑂𝑃𝑈) = 𝑈)
3433adantrl 712 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑂𝑃𝑈) = 𝑈)
3531, 34opeq12d 4805 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩ = ⟨𝐹, 𝑈⟩)
3619, 26, 353eqtrrd 2861 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨𝐹, 𝑈⟩ = (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cop 4565  cmpt 5138   I cid 5453   × cxp 5547  cres 5551  ccom 5553  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7145  cmpo 7147  1st c1st 7678  2nd c2nd 7679  Basecbs 16473  HLchlt 36368  LHypclh 37002  LTrncltrn 37119  TEndoctendo 37770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-riotaBAD 35971
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7680  df-2nd 7681  df-undef 7930  df-map 8398  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-llines 36516  df-lplanes 36517  df-lvols 36518  df-lines 36519  df-psubsp 36521  df-pmap 36522  df-padd 36814  df-lhyp 37006  df-laut 37007  df-ldil 37122  df-ltrn 37123  df-trl 37177  df-tendo 37773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator