Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Structured version   Visualization version   GIF version

Theorem dvhopN 35221
Description: Decompose a DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of DVecA and the other from the one-dimensional vector subspace 𝐸. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by ⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩, 𝑈, 𝐹, 𝑂. We swapped the order of vector sum (their juxtaposition i.e. composition) to show 𝐹, 𝑂 first. Note that 𝑂 and ( I ↾ 𝑇) are the zero and one of the division ring 𝐸, and ( I ↾ 𝐵) is the zero of the translation group. 𝑆 is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b 𝐵 = (Base‘𝐾)
dvhop.h 𝐻 = (LHyp‘𝐾)
dvhop.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhop.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhop.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
dvhop.a 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
dvhop.s 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
dvhop.o 𝑂 = (𝑐𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dvhopN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨𝐹, 𝑈⟩ = (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)))
Distinct variable groups:   𝐵,𝑐   𝑎,𝑏,𝑓,𝑔,𝑠,𝐸   𝐻,𝑐   𝐾,𝑐   𝑃,𝑓,𝑔   𝑎,𝑐,𝑇,𝑏,𝑓,𝑔,𝑠   𝑊,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐵(𝑓,𝑔,𝑠,𝑎,𝑏)   𝑃(𝑠,𝑎,𝑏,𝑐)   𝑆(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝑈(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐸(𝑐)   𝐹(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝐻(𝑓,𝑔,𝑠,𝑎,𝑏)   𝐾(𝑓,𝑔,𝑠,𝑎,𝑏)   𝑂(𝑓,𝑔,𝑠,𝑎,𝑏,𝑐)   𝑊(𝑓,𝑔,𝑠)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 791 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝑈𝐸)
2 dvhop.b . . . . . . 7 𝐵 = (Base‘𝐾)
3 dvhop.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 dvhop.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4idltrn 34252 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
65adantr 479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ( I ↾ 𝐵) ∈ 𝑇)
7 dvhop.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
83, 4, 7tendoidcl 34873 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
98adantr 479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ( I ↾ 𝑇) ∈ 𝐸)
10 dvhop.s . . . . . 6 𝑆 = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
1110dvhopspN 35220 . . . . 5 ((𝑈𝐸 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩)
121, 6, 9, 11syl12anc 1315 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩)
132, 3, 7tendoid 34877 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
1413adantrl 747 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
153, 4, 7tendo1mulr 34875 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
1615adantrl 747 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
1714, 16opeq12d 4337 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝑈‘( I ↾ 𝐵)), (𝑈 ∘ ( I ↾ 𝑇))⟩ = ⟨( I ↾ 𝐵), 𝑈⟩)
1812, 17eqtrd 2638 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩) = ⟨( I ↾ 𝐵), 𝑈⟩)
1918oveq2d 6538 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)) = (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩))
20 simprl 789 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝐹𝑇)
21 dvhop.o . . . . 5 𝑂 = (𝑐𝑇 ↦ ( I ↾ 𝐵))
222, 3, 4, 7, 21tendo0cl 34894 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2322adantr 479 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝑂𝐸)
24 dvhop.a . . . 4 𝐴 = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ((2nd𝑓)𝑃(2nd𝑔))⟩)
2524dvhopaddN 35219 . . 3 (((𝐹𝑇𝑂𝐸) ∧ (( I ↾ 𝐵) ∈ 𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩) = ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩)
2620, 23, 6, 1, 25syl22anc 1318 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (⟨𝐹, 𝑂𝐴⟨( I ↾ 𝐵), 𝑈⟩) = ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩)
272, 3, 4ltrn1o 34226 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
2827adantrr 748 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → 𝐹:𝐵1-1-onto𝐵)
29 f1of 6030 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
30 fcoi1 5971 . . . 4 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
3128, 29, 303syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
32 dvhop.p . . . . 5 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
332, 3, 4, 7, 21, 32tendo0pl 34895 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑂𝑃𝑈) = 𝑈)
3433adantrl 747 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → (𝑂𝑃𝑈) = 𝑈)
3531, 34opeq12d 4337 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨(𝐹 ∘ ( I ↾ 𝐵)), (𝑂𝑃𝑈)⟩ = ⟨𝐹, 𝑈⟩)
3619, 26, 353eqtrrd 2643 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑈𝐸)) → ⟨𝐹, 𝑈⟩ = (⟨𝐹, 𝑂𝐴(𝑈𝑆⟨( I ↾ 𝐵), ( I ↾ 𝑇)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  cop 4125  cmpt 4632   I cid 4933   × cxp 5021  cres 5025  ccom 5027  wf 5781  1-1-ontowf1o 5784  cfv 5785  (class class class)co 6522  cmpt2 6524  1st c1st 7029  2nd c2nd 7030  Basecbs 15636  HLchlt 33453  LHypclh 34086  LTrncltrn 34203  TEndoctendo 34856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-riotaBAD 33055
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-op 4126  df-uni 4362  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-id 4938  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-1st 7031  df-2nd 7032  df-undef 7258  df-map 7718  df-preset 16692  df-poset 16710  df-plt 16722  df-lub 16738  df-glb 16739  df-join 16740  df-meet 16741  df-p0 16803  df-p1 16804  df-lat 16810  df-clat 16872  df-oposet 33279  df-ol 33281  df-oml 33282  df-covers 33369  df-ats 33370  df-atl 33401  df-cvlat 33425  df-hlat 33454  df-llines 33600  df-lplanes 33601  df-lvols 33602  df-lines 33603  df-psubsp 33605  df-pmap 33606  df-padd 33898  df-lhyp 34090  df-laut 34091  df-ldil 34206  df-ltrn 34207  df-trl 34262  df-tendo 34859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator