Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Structured version   Visualization version   GIF version

Theorem dvhopellsm 36877
 Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h 𝐻 = (LHyp‘𝐾)
dvhopellsm.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhopellsm.a + = (+g𝑈)
dvhopellsm.s 𝑆 = (LSubSp‘𝑈)
dvhopellsm.p = (LSSum‘𝑈)
Assertion
Ref Expression
dvhopellsm (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧, +   𝑤,𝐹,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧   𝑥,𝑊,𝑦   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤)   𝑆(𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑧,𝑤)   𝐾(𝑧,𝑤)   𝑊(𝑧,𝑤)

Proof of Theorem dvhopellsm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 dvhopellsm.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 36870 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
543ad2ant1 1125 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑈 ∈ LMod)
6 dvhopellsm.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
76lsssssubg 19131 . . . . 5 (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈))
85, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 ⊆ (SubGrp‘𝑈))
9 simp2 1129 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
108, 9sseldd 3733 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (SubGrp‘𝑈))
11 simp3 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
128, 11sseldd 3733 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (SubGrp‘𝑈))
13 dvhopellsm.a . . . 4 + = (+g𝑈)
14 dvhopellsm.p . . . 4 = (LSSum‘𝑈)
1513, 14lsmelval 18235 . . 3 ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
1610, 12, 15syl2anc 696 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
17 eqid 2748 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
1817, 6lssss 19110 . . . . . . 7 (𝑌𝑆𝑌 ⊆ (Base‘𝑈))
19183ad2ant3 1127 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Base‘𝑈))
20 eqid 2748 . . . . . . . 8 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
21 eqid 2748 . . . . . . . 8 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
221, 20, 21, 2, 17dvhvbase 36847 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
23223ad2ant1 1125 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 23sseqtrd 3770 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
25 relxp 5271 . . . . 5 Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))
26 relss 5351 . . . . 5 (𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑌))
2724, 25, 26mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑌)
28 oveq2 6809 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢 + 𝑣) = (𝑢 +𝑧, 𝑤⟩))
2928eqeq2d 2758 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)))
3029exopxfr2 5410 . . . 4 (Rel 𝑌 → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3127, 30syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3231rexbidv 3178 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3317, 6lssss 19110 . . . . . . 7 (𝑋𝑆𝑋 ⊆ (Base‘𝑈))
34333ad2ant2 1126 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Base‘𝑈))
3534, 23sseqtrd 3770 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
36 relss 5351 . . . . 5 (𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑋))
3735, 25, 36mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑋)
38 oveq1 6808 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 +𝑧, 𝑤⟩) = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))
3938eqeq2d 2758 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4039anbi2d 742 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → ((⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
41402exbidv 1989 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4241exopxfr2 5410 . . . 4 (Rel 𝑋 → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
4337, 42syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
44 19.42vv 2020 . . . . 5 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
45 anass 684 . . . . . . . 8 (((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
46452exbii 1912 . . . . . . 7 (∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4746bicomi 214 . . . . . 6 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4847a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4944, 48syl5bbr 274 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → ((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
50492exbidv 1989 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5143, 50bitrd 268 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5216, 32, 513bitrd 294 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1620  ∃wex 1841   ∈ wcel 2127  ∃wrex 3039   ⊆ wss 3703  ⟨cop 4315   × cxp 5252  Rel wrel 5259  ‘cfv 6037  (class class class)co 6801  Basecbs 16030  +gcplusg 16114  SubGrpcsubg 17760  LSSumclsm 18220  LModclmod 19036  LSubSpclss 19105  HLchlt 35109  LHypclh 35742  LTrncltrn 35859  TEndoctendo 36511  DVecHcdvh 36838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-riotaBAD 34711 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-tpos 7509  df-undef 7556  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-sca 16130  df-vsca 16131  df-0g 16275  df-preset 17100  df-poset 17118  df-plt 17130  df-lub 17146  df-glb 17147  df-join 17148  df-meet 17149  df-p0 17211  df-p1 17212  df-lat 17218  df-clat 17280  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-sbg 17599  df-subg 17763  df-lsm 18222  df-mgp 18661  df-ur 18673  df-ring 18720  df-oppr 18794  df-dvdsr 18812  df-unit 18813  df-invr 18843  df-dvr 18854  df-drng 18922  df-lmod 19038  df-lss 19106  df-lvec 19276  df-oposet 34935  df-ol 34937  df-oml 34938  df-covers 35025  df-ats 35026  df-atl 35057  df-cvlat 35081  df-hlat 35110  df-llines 35256  df-lplanes 35257  df-lvols 35258  df-lines 35259  df-psubsp 35261  df-pmap 35262  df-padd 35554  df-lhyp 35746  df-laut 35747  df-ldil 35862  df-ltrn 35863  df-trl 35918  df-tendo 36514  df-edring 36516  df-dvech 36839 This theorem is referenced by:  diblsmopel  36931  dihopelvalcpre  37008  xihopellsmN  37014  dihopellsm  37015
 Copyright terms: Public domain W3C validator