Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhset Structured version   Visualization version   GIF version

Theorem dvhset 36687
Description: The constructed full vector space H for a lattice 𝐾. (Contributed by NM, 17-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhset.h 𝐻 = (LHyp‘𝐾)
dvhset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhset.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
dvhset.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
Assertion
Ref Expression
dvhset ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
Distinct variable groups:   𝑓,𝑔,𝐻   𝑓,,𝑠,𝐾,𝑔   𝑇,   𝑓,𝑊,𝑔,,𝑠   𝑓,𝑋,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔,,𝑠)   𝑇(𝑓,𝑔,𝑠)   𝑈(𝑓,𝑔,,𝑠)   𝐸(𝑓,𝑔,,𝑠)   𝐻(,𝑠)   𝑋(,𝑠)

Proof of Theorem dvhset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvhset.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
2 dvhset.h . . . . 5 𝐻 = (LHyp‘𝐾)
32dvhfset 36686 . . . 4 (𝐾𝑋 → (DVecH‘𝐾) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
43fveq1d 6231 . . 3 (𝐾𝑋 → ((DVecH‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))‘𝑊))
51, 4syl5eq 2697 . 2 (𝐾𝑋𝑈 = ((𝑤𝐻 ↦ ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))‘𝑊))
6 fveq2 6229 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
7 dvhset.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
86, 7syl6eqr 2703 . . . . . . 7 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
9 fveq2 6229 . . . . . . . 8 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊))
10 dvhset.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
119, 10syl6eqr 2703 . . . . . . 7 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸)
128, 11xpeq12d 5174 . . . . . 6 (𝑤 = 𝑊 → (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) = (𝑇 × 𝐸))
1312opeq2d 4440 . . . . 5 (𝑤 = 𝑊 → ⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩ = ⟨(Base‘ndx), (𝑇 × 𝐸)⟩)
148mpteq1d 4771 . . . . . . . 8 (𝑤 = 𝑊 → ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))) = (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘))))
1514opeq2d 4440 . . . . . . 7 (𝑤 = 𝑊 → ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩ = ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)
1612, 12, 15mpt2eq123dv 6759 . . . . . 6 (𝑤 = 𝑊 → (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩) = (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩))
1716opeq2d 4440 . . . . 5 (𝑤 = 𝑊 → ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩ = ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩)
18 fveq2 6229 . . . . . . 7 (𝑤 = 𝑊 → ((EDRing‘𝐾)‘𝑤) = ((EDRing‘𝐾)‘𝑊))
19 dvhset.d . . . . . . 7 𝐷 = ((EDRing‘𝐾)‘𝑊)
2018, 19syl6eqr 2703 . . . . . 6 (𝑤 = 𝑊 → ((EDRing‘𝐾)‘𝑤) = 𝐷)
2120opeq2d 4440 . . . . 5 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩ = ⟨(Scalar‘ndx), 𝐷⟩)
2213, 17, 21tpeq123d 4315 . . . 4 (𝑤 = 𝑊 → {⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} = {⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩})
23 eqidd 2652 . . . . . . 7 (𝑤 = 𝑊 → ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩ = ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)
2411, 12, 23mpt2eq123dv 6759 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩) = (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩))
2524opeq2d 4440 . . . . 5 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩ = ⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩)
2625sneqd 4222 . . . 4 (𝑤 = 𝑊 → {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩} = {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})
2722, 26uneq12d 3801 . . 3 (𝑤 = 𝑊 → ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}) = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
28 eqid 2651 . . 3 (𝑤𝐻 ↦ ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})) = (𝑤𝐻 ↦ ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
29 tpex 6999 . . . 4 {⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∈ V
30 snex 4938 . . . 4 {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩} ∈ V
3129, 30unex 6998 . . 3 ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}) ∈ V
3227, 28, 31fvmpt 6321 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ ({⟨(Base‘ndx), (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)), 𝑔 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝐾)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑓 ∈ (((LTrn‘𝐾)‘𝑤) × ((TEndo‘𝐾)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))‘𝑊) = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
335, 32sylan9eq 2705 1 ((𝐾𝑋𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), (𝑇 × 𝐸)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝑇 × 𝐸), 𝑔 ∈ (𝑇 × 𝐸) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), (𝑇 ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), 𝐷⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠𝐸, 𝑓 ∈ (𝑇 × 𝐸) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  cun 3605  {csn 4210  {ctp 4214  cop 4216  cmpt 4762   × cxp 5141  ccom 5147  cfv 5926  cmpt2 6692  1st c1st 7208  2nd c2nd 7209  ndxcnx 15901  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991   ·𝑠 cvsca 15992  LHypclh 35588  LTrncltrn 35705  TEndoctendo 36357  EDRingcedring 36358  DVecHcdvh 36684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-oprab 6694  df-mpt2 6695  df-dvech 36685
This theorem is referenced by:  dvhsca  36688  dvhvbase  36693  dvhfvadd  36697  dvhfvsca  36706
  Copyright terms: Public domain W3C validator