MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivthlem1 Structured version   Visualization version   GIF version

Theorem dvivthlem1 24607
Description: Lemma for dvivth 24609. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvivth.5 (𝜑𝑀 < 𝑁)
dvivth.6 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
dvivth.7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
Assertion
Ref Expression
dvivthlem1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺   𝑥,𝑀,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐺(𝑦)

Proof of Theorem dvivthlem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 12801 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2 dvivth.1 . . . . 5 (𝜑𝑀 ∈ (𝐴(,)𝐵))
31, 2sseldi 3967 . . . 4 (𝜑𝑀 ∈ ℝ)
4 dvivth.2 . . . . 5 (𝜑𝑁 ∈ (𝐴(,)𝐵))
51, 4sseldi 3967 . . . 4 (𝜑𝑁 ∈ ℝ)
6 dvivth.5 . . . . 5 (𝜑𝑀 < 𝑁)
73, 5, 6ltled 10790 . . . 4 (𝜑𝑀𝑁)
8 dvivth.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
9 cncff 23503 . . . . . . . . . 10 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
1110ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
12 dvfre 24550 . . . . . . . . . . . . . 14 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1310, 1, 12sylancl 588 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
14 dvivth.4 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
154, 14eleqtrrd 2918 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
1613, 15ffvelrnd 6854 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
172, 14eleqtrrd 2918 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ dom (ℝ D 𝐹))
1813, 17ffvelrnd 6854 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
19 iccssre 12821 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
2016, 18, 19syl2anc 586 . . . . . . . . . . 11 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
21 dvivth.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
2220, 21sseldd 3970 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2322adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
241a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2524sselda 3969 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
2623, 25remulcld 10673 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℝ)
2711, 26resubcld 11070 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐹𝑦) − (𝐶 · 𝑦)) ∈ ℝ)
28 dvivth.7 . . . . . . 7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
2927, 28fmptd 6880 . . . . . 6 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
30 iccssioo2 12812 . . . . . . 7 ((𝑀 ∈ (𝐴(,)𝐵) ∧ 𝑁 ∈ (𝐴(,)𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
312, 4, 30syl2anc 586 . . . . . 6 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
3229, 31fssresd 6547 . . . . 5 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ)
33 ax-resscn 10596 . . . . . 6 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
35 fss 6529 . . . . . . . . 9 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3629, 33, 35sylancl 588 . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3728oveq2i 7169 . . . . . . . . . . 11 (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦))))
38 reelprrecn 10631 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
4011recnd 10671 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
4114feq2d 6502 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4213, 41mpbid 234 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4342ffvelrnda 6853 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
4410feqmptd 6735 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
4544oveq2d 7174 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
4642feqmptd 6735 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4745, 46eqtr3d 2860 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4826recnd 10671 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℂ)
49 remulcl 10624 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5022, 49sylan 582 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5150recnd 10671 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℂ)
5222adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ)
5334sselda 3969 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
54 1cnd 10638 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
5539dvmptid 24556 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
5622recnd 10671 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
5739, 53, 54, 55, 56dvmptcmul 24563 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ (𝐶 · 1)))
5856mulid1d 10660 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 · 1) = 𝐶)
5958mpteq2dv 5164 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐶 · 1)) = (𝑦 ∈ ℝ ↦ 𝐶))
6057, 59eqtrd 2858 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ 𝐶))
61 eqid 2823 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261tgioo2 23413 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
63 iooretop 23376 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
6539, 51, 52, 60, 24, 62, 61, 64dvmptres 24562 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐶 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝐶))
6639, 40, 43, 47, 48, 23, 65dvmptsub 24566 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6737, 66syl5eq 2870 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6867dmeqd 5776 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐺) = dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
69 dmmptg 6098 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴(,)𝐵)(((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V → dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵))
70 ovex 7191 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V
7170a1i 11 . . . . . . . . . 10 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V)
7269, 71mprg 3154 . . . . . . . . 9 dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵)
7368, 72syl6eq 2874 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
74 dvcn 24520 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
7534, 36, 24, 73, 74syl31anc 1369 . . . . . . 7 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
76 rescncf 23507 . . . . . . 7 ((𝑀[,]𝑁) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)))
7731, 75, 76sylc 65 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
78 cncffvrn 23508 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)) → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
7933, 77, 78sylancr 589 . . . . 5 (𝜑 → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
8032, 79mpbird 259 . . . 4 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
813, 5, 7, 80evthicc 24062 . . 3 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ∧ ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧)))
8281simpld 497 . 2 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥))
83 fvres 6691 . . . . . . . 8 (𝑧 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) = (𝐺𝑧))
84 fvres 6691 . . . . . . . 8 (𝑥 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) = (𝐺𝑥))
8583, 84breqan12rd 5085 . . . . . . 7 ((𝑥 ∈ (𝑀[,]𝑁) ∧ 𝑧 ∈ (𝑀[,]𝑁)) → (((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ (𝐺𝑧) ≤ (𝐺𝑥)))
8685ralbidva 3198 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
8786adantl 484 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
88 ioossicc 12825 . . . . . 6 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
89 ssralv 4035 . . . . . 6 ((𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9088, 89ax-mp 5 . . . . 5 (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
9187, 90syl6bi 255 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9231sselda 3969 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴(,)𝐵))
9342ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9492, 93syldan 593 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9594recnd 10671 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9695adantr 483 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9756ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℂ)
9867fveq1d 6674 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
9998adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
100 fveq2 6672 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
101100oveq1d 7173 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D 𝐹)‘𝑦) − 𝐶) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
102 eqid 2823 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))
103 ovex 7191 . . . . . . . . . . . 12 (((ℝ D 𝐹)‘𝑥) − 𝐶) ∈ V
104101, 102, 103fvmpt 6770 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10592, 104syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10699, 105eqtrd 2858 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
107106adantr 483 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10829ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1091a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
110 simprl 769 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝑁))
11188, 31sstrid 3980 . . . . . . . . . 10 (𝜑 → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
112111ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
11392adantr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
11473ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
115113, 114eleqtrrd 2918 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
116 simprr 771 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
117 fveq2 6672 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
118117breq1d 5078 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐺𝑧) ≤ (𝐺𝑥) ↔ (𝐺𝑤) ≤ (𝐺𝑥)))
119118cbvralvw 3451 . . . . . . . . . 10 (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
120116, 119sylib 220 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
121108, 109, 110, 112, 115, 120dvferm 24587 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = 0)
122107, 121eqtr3d 2860 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) = 0)
12396, 97, 122subeq0d 11007 . . . . . 6 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
124123exp32 423 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
125 vex 3499 . . . . . . 7 𝑥 ∈ V
126125elpr 4592 . . . . . 6 (𝑥 ∈ {𝑀, 𝑁} ↔ (𝑥 = 𝑀𝑥 = 𝑁))
127106adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
12829ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1291a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
130 simprl 769 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑀)
131 eliooord 12799 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑀𝑀 < 𝐵))
1322, 131syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑀𝑀 < 𝐵))
133132simpld 497 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝑀)
134 ne0i 4302 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
135 ndmioo 12768 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
136135necon1ai 3045 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1372, 134, 1363syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
138137simpld 497 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1395rexrd 10693 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ*)
140 elioo2 12782 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
141138, 139, 140syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
1423, 133, 6, 141mpbir3and 1338 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (𝐴(,)𝑁))
143142ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑀 ∈ (𝐴(,)𝑁))
144130, 143eqeltrd 2915 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝑁))
145137simprd 498 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
146 eliooord 12799 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑁𝑁 < 𝐵))
1474, 146syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑁𝑁 < 𝐵))
148147simprd 498 . . . . . . . . . . . . . . 15 (𝜑𝑁 < 𝐵)
149139, 145, 148xrltled 12546 . . . . . . . . . . . . . 14 (𝜑𝑁𝐵)
150 iooss2 12777 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑁𝐵) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
151145, 149, 150syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
152151ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
15392adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
15473ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
155153, 154eleqtrrd 2918 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
156 simprr 771 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
157156, 119sylib 220 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
158130oveq1d 7173 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑥(,)𝑁) = (𝑀(,)𝑁))
159158raleqdv 3417 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥)))
160157, 159mpbird 259 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
161128, 129, 144, 152, 155, 160dvferm1 24584 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) ≤ 0)
162127, 161eqbrtrrd 5092 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0)
16394adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
16422ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
165163, 164suble0d 11233 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0 ↔ ((ℝ D 𝐹)‘𝑥) ≤ 𝐶))
166162, 165mpbid 234 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
167 elicc2 12804 . . . . . . . . . . . . . 14 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
16816, 18, 167syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
16921, 168mpbid 234 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀)))
170169simp3d 1140 . . . . . . . . . . 11 (𝜑𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
171170ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
172130fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑀))
173171, 172breqtrrd 5096 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
174163, 164letri3d 10784 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
175166, 173, 174mpbir2and 711 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
176175exp32 423 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑀 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
177 simprl 769 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑁)
178177fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑁))
179169simp2d 1139 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
180179ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
181178, 180eqbrtrd 5090 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
18229ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1831a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
1843rexrd 10693 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ*)
185 elioo2 12782 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
186184, 145, 185syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
1875, 6, 148, 186mpbir3and 1338 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (𝑀(,)𝐵))
188187ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑁 ∈ (𝑀(,)𝐵))
189177, 188eqeltrd 2915 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝐵))
190138, 184, 133xrltled 12546 . . . . . . . . . . . . . 14 (𝜑𝐴𝑀)
191 iooss1 12776 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑀) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
192138, 190, 191syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
193192ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
19492adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
19573ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
196194, 195eleqtrrd 2918 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
197 simprr 771 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
198197, 119sylib 220 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
199177oveq2d 7174 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑥) = (𝑀(,)𝑁))
200199raleqdv 3417 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥)))
201198, 200mpbird 259 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥))
202182, 183, 189, 193, 196, 201dvferm2 24586 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ ((ℝ D 𝐺)‘𝑥))
203106adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
204202, 203breqtrd 5094 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶))
20594adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
20622ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
207205, 206subge0d 11232 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶) ↔ 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)))
208204, 207mpbid 234 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
209205, 206letri3d 10784 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
210181, 208, 209mpbir2and 711 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
211210exp32 423 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑁 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
212176, 211jaod 855 . . . . . 6 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑥 = 𝑀𝑥 = 𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
213126, 212syl5bi 244 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ {𝑀, 𝑁} → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
214 elun 4127 . . . . . . 7 (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
215 prunioo 12870 . . . . . . . . 9 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*𝑀𝑁) → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
216184, 139, 7, 215syl3anc 1367 . . . . . . . 8 (𝜑 → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
217216eleq2d 2900 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
218214, 217syl5bbr 287 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
219218biimpar 480 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
220124, 213, 219mpjaod 856 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
22191, 220syld 47 . . 3 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
222221reximdva 3276 . 2 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶))
22382, 222mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cun 3936  wss 3938  c0 4293  {cpr 4571   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872  (,)cioo 12741  [,]cicc 12744  TopOpenctopn 16697  topGenctg 16713  fldccnfld 20547  cnccncf 23486   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dvivthlem2  24608
  Copyright terms: Public domain W3C validator