MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivthlem1 Structured version   Visualization version   GIF version

Theorem dvivthlem1 23682
Description: Lemma for dvivth 23684. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1 (𝜑𝑀 ∈ (𝐴(,)𝐵))
dvivth.2 (𝜑𝑁 ∈ (𝐴(,)𝐵))
dvivth.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
dvivth.4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvivth.5 (𝜑𝑀 < 𝑁)
dvivth.6 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
dvivth.7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
Assertion
Ref Expression
dvivthlem1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺   𝑥,𝑀,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝐺(𝑦)

Proof of Theorem dvivthlem1
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 12180 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2 dvivth.1 . . . . 5 (𝜑𝑀 ∈ (𝐴(,)𝐵))
31, 2sseldi 3582 . . . 4 (𝜑𝑀 ∈ ℝ)
4 dvivth.2 . . . . 5 (𝜑𝑁 ∈ (𝐴(,)𝐵))
51, 4sseldi 3582 . . . 4 (𝜑𝑁 ∈ ℝ)
6 dvivth.5 . . . . 5 (𝜑𝑀 < 𝑁)
73, 5, 6ltled 10132 . . . 4 (𝜑𝑀𝑁)
8 dvivth.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
9 cncff 22609 . . . . . . . . . 10 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
1110ffvelrnda 6317 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
12 dvfre 23627 . . . . . . . . . . . . . 14 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1310, 1, 12sylancl 693 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
14 dvivth.4 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
154, 14eleqtrrd 2701 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ dom (ℝ D 𝐹))
1613, 15ffvelrnd 6318 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑁) ∈ ℝ)
172, 14eleqtrrd 2701 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ dom (ℝ D 𝐹))
1813, 17ffvelrnd 6318 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑀) ∈ ℝ)
19 iccssre 12200 . . . . . . . . . . . 12 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
2016, 18, 19syl2anc 692 . . . . . . . . . . 11 (𝜑 → (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ⊆ ℝ)
21 dvivth.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)))
2220, 21sseldd 3585 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2322adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
241a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2524sselda 3584 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
2623, 25remulcld 10017 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℝ)
2711, 26resubcld 10405 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝐹𝑦) − (𝐶 · 𝑦)) ∈ ℝ)
28 dvivth.7 . . . . . . 7 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))
2927, 28fmptd 6343 . . . . . 6 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
30 iccssioo2 12191 . . . . . . 7 ((𝑀 ∈ (𝐴(,)𝐵) ∧ 𝑁 ∈ (𝐴(,)𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
312, 4, 30syl2anc 692 . . . . . 6 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴(,)𝐵))
3229, 31fssresd 6030 . . . . 5 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ)
33 ax-resscn 9940 . . . . . 6 ℝ ⊆ ℂ
3433a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
35 fss 6015 . . . . . . . . 9 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3629, 33, 35sylancl 693 . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3728oveq2i 6618 . . . . . . . . . . 11 (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦))))
38 reelprrecn 9975 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
4011recnd 10015 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
4114feq2d 5990 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
4213, 41mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
4342ffvelrnda 6317 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
4410feqmptd 6208 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
4544oveq2d 6623 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
4642feqmptd 6208 . . . . . . . . . . . . 13 (𝜑 → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4745, 46eqtr3d 2657 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
4826recnd 10015 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐶 · 𝑦) ∈ ℂ)
49 remulcl 9968 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5022, 49sylan 488 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℝ)
5150recnd 10015 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐶 · 𝑦) ∈ ℂ)
5222adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ)
5334sselda 3584 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
54 1cnd 10003 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
5539dvmptid 23633 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
5622recnd 10015 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
5739, 53, 54, 55, 56dvmptcmul 23640 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ (𝐶 · 1)))
5856mulid1d 10004 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 · 1) = 𝐶)
5958mpteq2dv 4707 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐶 · 1)) = (𝑦 ∈ ℝ ↦ 𝐶))
6057, 59eqtrd 2655 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝐶 · 𝑦))) = (𝑦 ∈ ℝ ↦ 𝐶))
61 eqid 2621 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6261tgioo2 22519 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
63 iooretop 22482 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
6539, 51, 52, 60, 24, 62, 61, 64dvmptres 23639 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐶 · 𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 𝐶))
6639, 40, 43, 47, 48, 23, 65dvmptsub 23643 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑦) − (𝐶 · 𝑦)))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6737, 66syl5eq 2667 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
6867dmeqd 5288 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐺) = dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)))
69 dmmptg 5593 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴(,)𝐵)(((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V → dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵))
70 ovex 6635 . . . . . . . . . . 11 (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V
7170a1i 11 . . . . . . . . . 10 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹)‘𝑦) − 𝐶) ∈ V)
7269, 71mprg 2921 . . . . . . . . 9 dom (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝐴(,)𝐵)
7368, 72syl6eq 2671 . . . . . . . 8 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
74 dvcn 23597 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐺:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)) → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
7534, 36, 24, 73, 74syl31anc 1326 . . . . . . 7 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
76 rescncf 22613 . . . . . . 7 ((𝑀[,]𝑁) ⊆ (𝐴(,)𝐵) → (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)))
7731, 75, 76sylc 65 . . . . . 6 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
78 cncffvrn 22614 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℂ)) → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
7933, 77, 78sylancr 694 . . . . 5 (𝜑 → ((𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ) ↔ (𝐺 ↾ (𝑀[,]𝑁)):(𝑀[,]𝑁)⟶ℝ))
8032, 79mpbird 247 . . . 4 (𝜑 → (𝐺 ↾ (𝑀[,]𝑁)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
813, 5, 7, 80evthicc 23141 . . 3 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ∧ ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧)))
8281simpld 475 . 2 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥))
83 fvres 6166 . . . . . . . 8 (𝑧 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) = (𝐺𝑧))
84 fvres 6166 . . . . . . . 8 (𝑥 ∈ (𝑀[,]𝑁) → ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) = (𝐺𝑥))
8583, 84breqan12rd 4632 . . . . . . 7 ((𝑥 ∈ (𝑀[,]𝑁) ∧ 𝑧 ∈ (𝑀[,]𝑁)) → (((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ (𝐺𝑧) ≤ (𝐺𝑥)))
8685ralbidva 2979 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
8786adantl 482 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) ↔ ∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
88 ioossicc 12204 . . . . . 6 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
89 ssralv 3647 . . . . . 6 ((𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) → (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9088, 89ax-mp 5 . . . . 5 (∀𝑧 ∈ (𝑀[,]𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
9187, 90syl6bi 243 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥)))
9231sselda 3584 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴(,)𝐵))
9342ffvelrnda 6317 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9492, 93syldan 487 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
9594recnd 10015 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9695adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
9756ad2antrr 761 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℂ)
9867fveq1d 6152 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
9998adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥))
100 fveq2 6150 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
101100oveq1d 6622 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (((ℝ D 𝐹)‘𝑦) − 𝐶) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
102 eqid 2621 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))
103 ovex 6635 . . . . . . . . . . . 12 (((ℝ D 𝐹)‘𝑥) − 𝐶) ∈ V
104101, 102, 103fvmpt 6241 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10592, 104syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑦 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑦) − 𝐶))‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10699, 105eqtrd 2655 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
107106adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
10829ad2antrr 761 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1091a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
110 simprl 793 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝑁))
11188, 31syl5ss 3595 . . . . . . . . . 10 (𝜑 → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
112111ad2antrr 761 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑁) ⊆ (𝐴(,)𝐵))
11392adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
11473ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
115113, 114eleqtrrd 2701 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
116 simprr 795 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
117 fveq2 6150 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
118117breq1d 4625 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐺𝑧) ≤ (𝐺𝑥) ↔ (𝐺𝑤) ≤ (𝐺𝑥)))
119118cbvralv 3159 . . . . . . . . . 10 (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
120116, 119sylib 208 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
121108, 109, 110, 112, 115, 120dvferm 23662 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = 0)
122107, 121eqtr3d 2657 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) = 0)
12396, 97, 122subeq0d 10347 . . . . . 6 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 ∈ (𝑀(,)𝑁) ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
124123exp32 630 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
125 vex 3189 . . . . . . 7 𝑥 ∈ V
126125elpr 4171 . . . . . 6 (𝑥 ∈ {𝑀, 𝑁} ↔ (𝑥 = 𝑀𝑥 = 𝑁))
127106adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
12829ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1291a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
130 simprl 793 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑀)
131 eliooord 12178 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑀𝑀 < 𝐵))
1322, 131syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑀𝑀 < 𝐵))
133132simpld 475 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝑀)
134 ne0i 3899 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
135 ndmioo 12147 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
136135necon1ai 2817 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1372, 134, 1363syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
138137simpld 475 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1395rexrd 10036 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ*)
140 elioo2 12161 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑁 ∈ ℝ*) → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
141138, 139, 140syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 ∈ (𝐴(,)𝑁) ↔ (𝑀 ∈ ℝ ∧ 𝐴 < 𝑀𝑀 < 𝑁)))
1423, 133, 6, 141mpbir3and 1243 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (𝐴(,)𝑁))
143142ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑀 ∈ (𝐴(,)𝑁))
144130, 143eqeltrd 2698 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝑁))
145137simprd 479 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
146 eliooord 12178 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑁𝑁 < 𝐵))
1474, 146syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 < 𝑁𝑁 < 𝐵))
148147simprd 479 . . . . . . . . . . . . . . 15 (𝜑𝑁 < 𝐵)
149 xrltle 11929 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑁 < 𝐵𝑁𝐵))
150139, 145, 149syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 < 𝐵𝑁𝐵))
151148, 150mpd 15 . . . . . . . . . . . . . 14 (𝜑𝑁𝐵)
152 iooss2 12156 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑁𝐵) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
153145, 151, 152syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
154153ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝑁) ⊆ (𝐴(,)𝐵))
15592adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
15673ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
157155, 156eleqtrrd 2701 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
158 simprr 795 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
159158, 119sylib 208 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
160130oveq1d 6622 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑥(,)𝑁) = (𝑀(,)𝑁))
161160raleqdv 3133 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥)))
162159, 161mpbird 247 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑥(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
163128, 129, 144, 154, 157, 162dvferm1 23659 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) ≤ 0)
164127, 163eqbrtrrd 4639 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0)
16594adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
16622ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
167165, 166suble0d 10565 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((((ℝ D 𝐹)‘𝑥) − 𝐶) ≤ 0 ↔ ((ℝ D 𝐹)‘𝑥) ≤ 𝐶))
168164, 167mpbid 222 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
169 elicc2 12183 . . . . . . . . . . . . . 14 ((((ℝ D 𝐹)‘𝑁) ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑀) ∈ ℝ) → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
17016, 18, 169syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀)) ↔ (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀))))
17121, 170mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ ((ℝ D 𝐹)‘𝑁) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑀)))
172171simp3d 1073 . . . . . . . . . . 11 (𝜑𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
173172ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑀))
174130fveq2d 6154 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑀))
175173, 174breqtrrd 4643 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
176165, 166letri3d 10126 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
177168, 175, 176mpbir2and 956 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑀 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
178177exp32 630 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑀 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
179 simprl 793 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 = 𝑁)
180179fveq2d 6154 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑁))
181171simp2d 1072 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
182181ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑁) ≤ 𝐶)
183180, 182eqbrtrd 4637 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ≤ 𝐶)
18429ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
1851a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝐴(,)𝐵) ⊆ ℝ)
1863rexrd 10036 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ*)
187 elioo2 12161 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
188186, 145, 187syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ (𝑀(,)𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝑀 < 𝑁𝑁 < 𝐵)))
1895, 6, 148, 188mpbir3and 1243 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (𝑀(,)𝐵))
190189ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑁 ∈ (𝑀(,)𝐵))
191179, 190eqeltrd 2698 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝑀(,)𝐵))
192 xrltle 11929 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐴 < 𝑀𝐴𝑀))
193138, 186, 192syl2anc 692 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝑀𝐴𝑀))
194133, 193mpd 15 . . . . . . . . . . . . . 14 (𝜑𝐴𝑀)
195 iooss1 12155 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑀) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
196138, 194, 195syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
197196ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝐵) ⊆ (𝐴(,)𝐵))
19892adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ (𝐴(,)𝐵))
19973ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
200198, 199eleqtrrd 2701 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝑥 ∈ dom (ℝ D 𝐺))
201 simprr 795 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))
202201, 119sylib 208 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥))
203179oveq2d 6623 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (𝑀(,)𝑥) = (𝑀(,)𝑁))
204203raleqdv 3133 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥) ↔ ∀𝑤 ∈ (𝑀(,)𝑁)(𝐺𝑤) ≤ (𝐺𝑥)))
205202, 204mpbird 247 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ∀𝑤 ∈ (𝑀(,)𝑥)(𝐺𝑤) ≤ (𝐺𝑥))
206184, 185, 191, 197, 200, 205dvferm2 23661 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ ((ℝ D 𝐺)‘𝑥))
207106adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐺)‘𝑥) = (((ℝ D 𝐹)‘𝑥) − 𝐶))
208206, 207breqtrd 4641 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶))
20994adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
21022ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ∈ ℝ)
211209, 210subge0d 10564 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (0 ≤ (((ℝ D 𝐹)‘𝑥) − 𝐶) ↔ 𝐶 ≤ ((ℝ D 𝐹)‘𝑥)))
212208, 211mpbid 222 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → 𝐶 ≤ ((ℝ D 𝐹)‘𝑥))
213209, 210letri3d 10126 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → (((ℝ D 𝐹)‘𝑥) = 𝐶 ↔ (((ℝ D 𝐹)‘𝑥) ≤ 𝐶𝐶 ≤ ((ℝ D 𝐹)‘𝑥))))
214183, 212, 213mpbir2and 956 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀[,]𝑁)) ∧ (𝑥 = 𝑁 ∧ ∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥))) → ((ℝ D 𝐹)‘𝑥) = 𝐶)
215214exp32 630 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 = 𝑁 → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
216178, 215jaod 395 . . . . . 6 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → ((𝑥 = 𝑀𝑥 = 𝑁) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
217126, 216syl5bi 232 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ {𝑀, 𝑁} → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶)))
218 elun 3733 . . . . . . 7 (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
219 prunioo 12246 . . . . . . . . 9 ((𝑀 ∈ ℝ*𝑁 ∈ ℝ*𝑀𝑁) → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
220186, 139, 7, 219syl3anc 1323 . . . . . . . 8 (𝜑 → ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) = (𝑀[,]𝑁))
221220eleq2d 2684 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑀(,)𝑁) ∪ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
222218, 221syl5bbr 274 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}) ↔ 𝑥 ∈ (𝑀[,]𝑁)))
223222biimpar 502 . . . . 5 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ∨ 𝑥 ∈ {𝑀, 𝑁}))
224124, 217, 223mpjaod 396 . . . 4 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀(,)𝑁)(𝐺𝑧) ≤ (𝐺𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
22591, 224syld 47 . . 3 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ((ℝ D 𝐹)‘𝑥) = 𝐶))
226225reximdva 3011 . 2 (𝜑 → (∃𝑥 ∈ (𝑀[,]𝑁)∀𝑧 ∈ (𝑀[,]𝑁)((𝐺 ↾ (𝑀[,]𝑁))‘𝑧) ≤ ((𝐺 ↾ (𝑀[,]𝑁))‘𝑥) → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶))
22782, 226mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cun 3554  wss 3556  c0 3893  {cpr 4152   class class class wbr 4615  cmpt 4675  dom cdm 5076  ran crn 5077  cres 5078  wf 5845  cfv 5849  (class class class)co 6607  cc 9881  cr 9882  0cc0 9883  1c1 9884   · cmul 9888  *cxr 10020   < clt 10021  cle 10022  cmin 10213  (,)cioo 12120  [,]cicc 12123  TopOpenctopn 16006  topGenctg 16022  fldccnfld 19668  cnccncf 22592   D cdv 23540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-fbas 19665  df-fg 19666  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cld 20736  df-ntr 20737  df-cls 20738  df-nei 20815  df-lp 20853  df-perf 20854  df-cn 20944  df-cnp 20945  df-haus 21032  df-cmp 21103  df-tx 21278  df-hmeo 21471  df-fil 21563  df-fm 21655  df-flim 21656  df-flf 21657  df-xms 22038  df-ms 22039  df-tms 22040  df-cncf 22594  df-limc 23543  df-dv 23544
This theorem is referenced by:  dvivthlem2  23683
  Copyright terms: Public domain W3C validator