MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlip Structured version   Visualization version   GIF version

Theorem dvlip 23660
Description: A function with derivative bounded by 𝑀 is Lipschitz continuous with Lipschitz constant equal to 𝑀. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dvlip.a (𝜑𝐴 ∈ ℝ)
dvlip.b (𝜑𝐵 ∈ ℝ)
dvlip.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dvlip.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvlip.m (𝜑𝑀 ∈ ℝ)
dvlip.l ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlip ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem dvlip
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6148 . . . . . . . 8 (𝑎 = 𝑌 → (𝐹𝑎) = (𝐹𝑌))
21oveq2d 6620 . . . . . . 7 (𝑎 = 𝑌 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑌)))
32fveq2d 6152 . . . . . 6 (𝑎 = 𝑌 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑌))))
4 oveq2 6612 . . . . . . . 8 (𝑎 = 𝑌 → (𝑏𝑎) = (𝑏𝑌))
54fveq2d 6152 . . . . . . 7 (𝑎 = 𝑌 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑌)))
65oveq2d 6620 . . . . . 6 (𝑎 = 𝑌 → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑏𝑌))))
73, 6breq12d 4626 . . . . 5 (𝑎 = 𝑌 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))))
87imbi2d 330 . . . 4 (𝑎 = 𝑌 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))) ↔ (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))))))
9 fveq2 6148 . . . . . . . 8 (𝑏 = 𝑋 → (𝐹𝑏) = (𝐹𝑋))
109oveq1d 6619 . . . . . . 7 (𝑏 = 𝑋 → ((𝐹𝑏) − (𝐹𝑌)) = ((𝐹𝑋) − (𝐹𝑌)))
1110fveq2d 6152 . . . . . 6 (𝑏 = 𝑋 → (abs‘((𝐹𝑏) − (𝐹𝑌))) = (abs‘((𝐹𝑋) − (𝐹𝑌))))
12 oveq1 6611 . . . . . . . 8 (𝑏 = 𝑋 → (𝑏𝑌) = (𝑋𝑌))
1312fveq2d 6152 . . . . . . 7 (𝑏 = 𝑋 → (abs‘(𝑏𝑌)) = (abs‘(𝑋𝑌)))
1413oveq2d 6620 . . . . . 6 (𝑏 = 𝑋 → (𝑀 · (abs‘(𝑏𝑌))) = (𝑀 · (abs‘(𝑋𝑌))))
1511, 14breq12d 4626 . . . . 5 (𝑏 = 𝑋 → ((abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))) ↔ (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
1615imbi2d 330 . . . 4 (𝑏 = 𝑋 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))) ↔ (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))))
17 fveq2 6148 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
18 fveq2 6148 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1917, 18oveqan12d 6623 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑏) − (𝐹𝑎)))
2019fveq2d 6152 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑏) − (𝐹𝑎))))
21 oveq12 6613 . . . . . . . . . 10 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑦𝑥) = (𝑏𝑎))
2221fveq2d 6152 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘(𝑦𝑥)) = (abs‘(𝑏𝑎)))
2322oveq2d 6620 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑏𝑎))))
2420, 23breq12d 4626 . . . . . . 7 ((𝑦 = 𝑏𝑥 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
2524ancoms 469 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
26 fveq2 6148 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
27 fveq2 6148 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
2826, 27oveqan12d 6623 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑎) − (𝐹𝑏)))
2928fveq2d 6152 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
30 oveq12 6613 . . . . . . . . . 10 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑦𝑥) = (𝑎𝑏))
3130fveq2d 6152 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘(𝑦𝑥)) = (abs‘(𝑎𝑏)))
3231oveq2d 6620 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑎𝑏))))
3329, 32breq12d 4626 . . . . . . 7 ((𝑦 = 𝑎𝑥 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
3433ancoms 469 . . . . . 6 ((𝑥 = 𝑏𝑦 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
35 dvlip.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
36 dvlip.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
37 iccssre 12197 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
3835, 36, 37syl2anc 692 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
39 dvlip.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
40 cncff 22604 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
4139, 40syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
42 ffvelrn 6313 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑎 ∈ (𝐴[,]𝐵)) → (𝐹𝑎) ∈ ℂ)
43 ffvelrn 6313 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝐹𝑏) ∈ ℂ)
4442, 43anim12dan 881 . . . . . . . . . 10 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4541, 44sylan 488 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4645simprd 479 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑏) ∈ ℂ)
4745simpld 475 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑎) ∈ ℂ)
4846, 47abssubd 14126 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
49 ax-resscn 9937 . . . . . . . . . . . 12 ℝ ⊆ ℂ
5038, 49syl6ss 3595 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
5150sselda 3583 . . . . . . . . . 10 ((𝜑𝑏 ∈ (𝐴[,]𝐵)) → 𝑏 ∈ ℂ)
5251adantrl 751 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ ℂ)
5350sselda 3583 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝐴[,]𝐵)) → 𝑎 ∈ ℂ)
5453adantrr 752 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ ℂ)
5552, 54abssubd 14126 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘(𝑏𝑎)) = (abs‘(𝑎𝑏)))
5655oveq2d 6620 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑎𝑏))))
5748, 56breq12d 4626 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
5841adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
59 simpr2 1066 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐴[,]𝐵))
6058, 59ffvelrnd 6316 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑏) ∈ ℂ)
61 simpr1 1065 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐴[,]𝐵))
6258, 61ffvelrnd 6316 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑎) ∈ ℂ)
6360, 62subeq0ad 10346 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) = 0 ↔ (𝐹𝑏) = (𝐹𝑎)))
6463biimpar 502 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) = 0)
6564abs00bd 13965 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = 0)
6638adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴[,]𝐵) ⊆ ℝ)
6766, 61sseldd 3584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ)
6867rexrd 10033 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ*)
6966, 59sseldd 3584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ)
7069rexrd 10033 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ*)
71 ioon0 12143 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
7268, 70, 71syl2anc 692 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
73 dvlip.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
7473ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 𝑀 ∈ ℝ)
7569, 67resubcld 10402 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏𝑎) ∈ ℝ)
7675adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑏𝑎) ∈ ℝ)
7735adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ)
7877rexrd 10033 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ*)
7936adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ)
80 elicc2 12180 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
8177, 79, 80syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
8261, 81mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵))
8382simp2d 1072 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴𝑎)
84 iooss1 12152 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8578, 83, 84syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8679rexrd 10033 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ*)
87 elicc2 12180 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8877, 79, 87syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8959, 88mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵))
9089simp3d 1073 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏𝐵)
91 iooss2 12153 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ*𝑏𝐵) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9286, 90, 91syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9385, 92sstrd 3593 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
94 ssn0 3948 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ (𝐴(,)𝐵) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
9593, 94sylan 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
96 n0 3907 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
97 0red 9985 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
98 dvf 23577 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
99 dvlip.d . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
10099feq2d 5988 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
10198, 100mpbii 223 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
102101ffvelrnda 6315 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
103102abscld 14109 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
10473adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 ∈ ℝ)
105102absge0d 14117 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
106 dvlip.l . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
10797, 103, 104, 105, 106letrd 10138 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
108107ex 450 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
109108exlimdv 1858 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
110109imp 445 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
11196, 110sylan2b 492 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
112111adantlr 750 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
11395, 112syldan 487 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ 𝑀)
114 simpr3 1067 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎𝑏)
11569, 67subge0d 10561 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (0 ≤ (𝑏𝑎) ↔ 𝑎𝑏))
116114, 115mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑏𝑎))
117116adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑏𝑎))
11874, 76, 113, 117mulge0d 10548 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑀 · (𝑏𝑎)))
119118ex 450 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ → 0 ≤ (𝑀 · (𝑏𝑎))))
12072, 119sylbird 250 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
12169recnd 10012 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℂ)
12267recnd 10012 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℂ)
123121, 122subeq0ad 10346 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑏 = 𝑎))
124 equcom 1942 . . . . . . . . . . . . 13 (𝑏 = 𝑎𝑎 = 𝑏)
125123, 124syl6bb 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑎 = 𝑏))
126 0re 9984 . . . . . . . . . . . . . 14 0 ∈ ℝ
12773adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℝ)
128127recnd 10012 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℂ)
129128mul01d 10179 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · 0) = 0)
130129eqcomd 2627 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 = (𝑀 · 0))
131 eqle 10083 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 = (𝑀 · 0)) → 0 ≤ (𝑀 · 0))
132126, 130, 131sylancr 694 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · 0))
133 oveq2 6612 . . . . . . . . . . . . . 14 ((𝑏𝑎) = 0 → (𝑀 · (𝑏𝑎)) = (𝑀 · 0))
134133breq2d 4625 . . . . . . . . . . . . 13 ((𝑏𝑎) = 0 → (0 ≤ (𝑀 · (𝑏𝑎)) ↔ 0 ≤ (𝑀 · 0)))
135132, 134syl5ibrcom 237 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 → 0 ≤ (𝑀 · (𝑏𝑎))))
136125, 135sylbird 250 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 = 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
13767, 69leloed 10124 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑎 = 𝑏)))
138114, 137mpbid 222 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏𝑎 = 𝑏))
139120, 136, 138mpjaod 396 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · (𝑏𝑎)))
140139adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 0 ≤ (𝑀 · (𝑏𝑎)))
14165, 140eqbrtrd 4635 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
14260, 62subcld 10336 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
143142adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
144143abscld 14109 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
145144recnd 10012 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
14675adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℝ)
147146recnd 10012 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℂ)
148138ord 392 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏𝑎 = 𝑏))
149 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
150149eqcomd 2627 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐹𝑏) = (𝐹𝑎))
151148, 150syl6 35 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏 → (𝐹𝑏) = (𝐹𝑎)))
152151necon1ad 2807 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) ≠ (𝐹𝑎) → 𝑎 < 𝑏))
153152imp 445 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 < 𝑏)
15467adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 ∈ ℝ)
15569adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑏 ∈ ℝ)
156154, 155posdifd 10558 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
157153, 156mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 < (𝑏𝑎))
158157gt0ne0d 10536 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ≠ 0)
159145, 147, 158divrec2d 10749 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
160 iccss2 12186 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
16161, 59, 160syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
162161adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
163162sselda 3583 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → 𝑦 ∈ (𝐴[,]𝐵))
16441ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
165164ffvelrnda 6315 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ℂ)
166163, 165syldan 487 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (𝐹𝑦) ∈ ℂ)
167142ad2antrr 761 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
16863necon3bid 2834 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) ≠ 0 ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
169168biimpar 502 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
170169adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
171166, 167, 170divcld 10745 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
172164, 162feqresmpt 6207 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (𝐹𝑦)))
173 eqidd 2622 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))))
174 oveq1 6611 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑦) → (𝑥 / ((𝐹𝑏) − (𝐹𝑎))) = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))
175166, 172, 173, 174fmptco 6351 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
176 ref 13786 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℝ
177176a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ:ℂ⟶ℝ)
178177feqmptd 6206 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ = (𝑥 ∈ ℂ ↦ (ℜ‘𝑥)))
179 fveq2 6148 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) → (ℜ‘𝑥) = (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
180171, 175, 178, 179fmptco 6351 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
18139adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
182 rescncf 22608 . . . . . . . . . . . . . . . . . 18 ((𝑎[,]𝑏) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ)))
183161, 181, 182sylc 65 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
184183adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
185 eqid 2621 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎))))
186185divccncf 22617 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ ∧ ((𝐹𝑏) − (𝐹𝑎)) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
187143, 169, 186syl2anc 692 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
188184, 187cncfco 22618 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) ∈ ((𝑎[,]𝑏)–cn→ℂ))
189 recncf 22613 . . . . . . . . . . . . . . . 16 ℜ ∈ (ℂ–cn→ℝ)
190189a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ ∈ (ℂ–cn→ℝ))
191188, 190cncfco 22618 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
192180, 191eqeltrrd 2699 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
19349a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ⊆ ℂ)
194 iccssre 12197 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,]𝑏) ⊆ ℝ)
195154, 155, 194syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ ℝ)
196171recld 13868 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
197196recnd 10012 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℂ)
198 eqid 2621 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
199198tgioo2 22514 . . . . . . . . . . . . . . . . 17 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
200 iccntr 22532 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
20167, 69, 200syl2anc 692 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
202201adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
203193, 195, 197, 199, 198, 202dvmptntr 23640 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))))
204 ioossicc 12201 . . . . . . . . . . . . . . . . . . 19 (𝑎(,)𝑏) ⊆ (𝑎[,]𝑏)
205204sseli 3579 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑎[,]𝑏))
206205, 171sylan2 491 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
207 ovex 6632 . . . . . . . . . . . . . . . . . 18 (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ V
208207a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ V)
209 reelprrecn 9972 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ {ℝ, ℂ}
210209a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ∈ {ℝ, ℂ})
211205, 166sylan2 491 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (𝐹𝑦) ∈ ℂ)
21293adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
213212sselda 3583 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → 𝑦 ∈ (𝐴(,)𝐵))
214101ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
215214ffvelrnda 6315 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
216213, 215syldan 487 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
21738ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐴[,]𝐵) ⊆ ℝ)
218 ioossre 12177 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ⊆ ℝ
219218a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ ℝ)
220198, 199dvres 23581 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑎(,)𝑏) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
221193, 164, 217, 219, 220syl22anc 1324 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
222 retop 22475 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
223 iooretop 22479 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
224 isopn3i 20796 . . . . . . . . . . . . . . . . . . . . . 22 (((topGen‘ran (,)) ∈ Top ∧ (𝑎(,)𝑏) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏))
225222, 223, 224mp2an 707 . . . . . . . . . . . . . . . . . . . . 21 ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏)
226225reseq2i 5353 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏))
227221, 226syl6eq 2671 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)))
228204, 162syl5ss 3594 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴[,]𝐵))
229164, 228feqresmpt 6207 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦)))
230229oveq2d 6620 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))))
231101adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
232231, 93fssresd 6028 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)):(𝑎(,)𝑏)⟶ℂ)
233232feqmptd 6206 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
234233adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
235 fvres 6164 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑎(,)𝑏) → (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
236235mpteq2ia 4700 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦))
237234, 236syl6eq 2671 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
238227, 230, 2373eqtr3d 2663 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
239210, 211, 216, 238, 143, 169dvmptdivc 23634 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
240206, 208, 239dvmptre 23638 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
241203, 240eqtrd 2655 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
242241dmeqd 5286 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
243 dmmptg 5591 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V → dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏))
244 fvex 6158 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
245244a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑎(,)𝑏) → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V)
246243, 245mprg 2921 . . . . . . . . . . . . . 14 dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏)
247242, 246syl6eq 2671 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑎(,)𝑏))
248154, 155, 153, 192, 247mvth 23659 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)))
249241fveq1d 6150 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥))
250 fveq2 6148 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
251250oveq1d 6619 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))) = (((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))))
252251fveq2d 6152 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
253 eqid 2621 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
254 fvex 6158 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
255252, 253, 254fvmpt 6239 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
256249, 255sylan9eq 2675 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
257 ubicc2 12231 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑏 ∈ (𝑎[,]𝑏))
25868, 70, 114, 257syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
259258ad2antrr 761 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
26017oveq1d 6619 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) = ((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))))
261260fveq2d 6152 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
262 eqid 2621 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
263 fvex 6158 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
264261, 262, 263fvmpt 6239 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
265259, 264syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
266 lbicc2 12230 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑎 ∈ (𝑎[,]𝑏))
26768, 70, 114, 266syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
268267ad2antrr 761 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
26926oveq1d 6619 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑎 → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) = ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))
270269fveq2d 6152 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
271 fvex 6158 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
272270, 262, 271fvmpt 6239 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
273268, 272syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
274265, 273oveq12d 6622 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
27560adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑏) ∈ ℂ)
276275, 143, 169divcld 10745 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
27762adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑎) ∈ ℂ)
278277, 143, 169divcld 10745 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
279276, 278resubd 13890 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
280275, 277, 143, 169divsubdird 10784 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
281143, 169dividd 10743 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = 1)
282280, 281eqtr3d 2657 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) = 1)
283282fveq2d 6152 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = (ℜ‘1))
284 re1 13828 . . . . . . . . . . . . . . . . . . 19 (ℜ‘1) = 1
285283, 284syl6eq 2671 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
286279, 285eqtr3d 2657 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
287286adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
288274, 287eqtrd 2655 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = 1)
289288oveq1d 6619 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) = (1 / (𝑏𝑎)))
290256, 289eqeq12d 2636 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
291290rexbidva 3042 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
292248, 291mpbid 222 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)))
293212sselda 3583 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ (𝐴(,)𝐵))
294214ffvelrnda 6315 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
295293, 294syldan 487 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
296142ad2antrr 761 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
297169adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
298295, 296, 297divcld 10745 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
299298recld 13868 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
300144adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
301299, 300remulcld 10014 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
302295abscld 14109 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
303127ad2antrr 761 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑀 ∈ ℝ)
304298abscld 14109 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
305143absge0d 14117 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
306305adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
307298releabsd 14124 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
308299, 304, 300, 306, 307lemul1ad 10907 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
309298, 296absmuld 14127 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
310295, 296, 297divcan1d 10746 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎))) = ((ℝ D 𝐹)‘𝑥))
311310fveq2d 6152 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
312309, 311eqtr3d 2657 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
313308, 312breqtrd 4639 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
314106adantlr 750 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
315314adantlr 750 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
316293, 315syldan 487 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
317301, 302, 303, 313, 316letrd 10138 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
318 oveq1 6611 . . . . . . . . . . . . . 14 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
319318breq1d 4623 . . . . . . . . . . . . 13 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → (((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀 ↔ ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
320317, 319syl5ibcom 235 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
321320rexlimdva 3024 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
322292, 321mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
323159, 322eqbrtrd 4635 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀)
32473ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑀 ∈ ℝ)
325 ledivmul2 10846 . . . . . . . . . 10 (((abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑏𝑎) ∈ ℝ ∧ 0 < (𝑏𝑎))) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
326144, 324, 146, 157, 325syl112anc 1327 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
327323, 326mpbid 222 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
328141, 327pm2.61dane 2877 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
32967, 69, 114abssubge0d 14104 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘(𝑏𝑎)) = (𝑏𝑎))
330329oveq2d 6620 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (𝑏𝑎)))
331328, 330breqtrrd 4641 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
33225, 34, 38, 57, 331wlogle 10505 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
333332expcom 451 . . . 4 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
3348, 16, 333vtocl2ga 3260 . . 3 ((𝑌 ∈ (𝐴[,]𝐵) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
335334ancoms 469 . 2 ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
336335impcom 446 1 ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  wss 3555  c0 3891  {cpr 4150   class class class wbr 4613  cmpt 4673  dom cdm 5074  ran crn 5075  cres 5076  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885  *cxr 10017   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  (,)cioo 12117  [,]cicc 12120  cre 13771  abscabs 13908  TopOpenctopn 16003  topGenctg 16019  fldccnfld 19665  Topctop 20617  intcnt 20731  cnccncf 22587   D cdv 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-cmp 21100  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537
This theorem is referenced by:  dvlipcn  23661  dvlip2  23662  dveq0  23667  dvfsumabs  23690  pige3  24173  lgamgulmlem2  24656
  Copyright terms: Public domain W3C validator