MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptcj Structured version   Visualization version   GIF version

Theorem dvmptcj 24567
Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptcj.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptcj.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptcj.da (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptcj (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptcj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvmptcj.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
21fmpttd 6881 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
3 dvmptcj.da . . . . . 6 (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
43dmeqd 5776 . . . . 5 (𝜑 → dom (ℝ D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
5 dvmptcj.b . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵𝑉)
65ralrimiva 3184 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
7 dmmptg 6098 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
86, 7syl 17 . . . . 5 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
94, 8eqtrd 2858 . . . 4 (𝜑 → dom (ℝ D (𝑥𝑋𝐴)) = 𝑋)
10 dvbsss 24502 . . . 4 dom (ℝ D (𝑥𝑋𝐴)) ⊆ ℝ
119, 10eqsstrrdi 4024 . . 3 (𝜑𝑋 ⊆ ℝ)
12 dvcj 24549 . . 3 (((𝑥𝑋𝐴):𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (𝑥𝑋𝐴))) = (∗ ∘ (ℝ D (𝑥𝑋𝐴))))
132, 11, 12syl2anc 586 . 2 (𝜑 → (ℝ D (∗ ∘ (𝑥𝑋𝐴))) = (∗ ∘ (ℝ D (𝑥𝑋𝐴))))
14 cjf 14465 . . . . 5 ∗:ℂ⟶ℂ
1514a1i 11 . . . 4 (𝜑 → ∗:ℂ⟶ℂ)
1615, 1cofmpt 6896 . . 3 (𝜑 → (∗ ∘ (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ (∗‘𝐴)))
1716oveq2d 7174 . 2 (𝜑 → (ℝ D (∗ ∘ (𝑥𝑋𝐴))) = (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))))
18 reelprrecn 10631 . . . . 5 ℝ ∈ {ℝ, ℂ}
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
2019, 1, 5, 3dvmptcl 24558 . . 3 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
2115feqmptd 6735 . . 3 (𝜑 → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦)))
22 fveq2 6672 . . 3 (𝑦 = 𝐵 → (∗‘𝑦) = (∗‘𝐵))
2320, 3, 21, 22fmptco 6893 . 2 (𝜑 → (∗ ∘ (ℝ D (𝑥𝑋𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
2413, 17, 233eqtr3d 2866 1 (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wss 3938  {cpr 4571  cmpt 5148  dom cdm 5557  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  ccj 14457   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-rest 16698  df-topn 16699  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dvmptre  24568  dvmptim  24569
  Copyright terms: Public domain W3C validator