Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptmulf Structured version   Visualization version   GIF version

Theorem dvmptmulf 39458
 Description: Function-builder for derivative, product rule. A version of dvmptmul 23630 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvmptmulf.ph 𝑥𝜑
dvmptmulf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptmulf.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptmulf.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptmulf.ab (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptmulf.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptmulf.d ((𝜑𝑥𝑋) → 𝐷𝑊)
dvmptmulf.cd (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptmulf (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑆(𝑥)

Proof of Theorem dvmptmulf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2761 . . . . 5 𝑦(𝐴 · 𝐶)
2 nfcsb1v 3530 . . . . . 6 𝑥𝑦 / 𝑥𝐴
3 nfcv 2761 . . . . . 6 𝑥 ·
4 nfcsb1v 3530 . . . . . 6 𝑥𝑦 / 𝑥𝐶
52, 3, 4nfov 6630 . . . . 5 𝑥(𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶)
6 csbeq1a 3523 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
7 csbeq1a 3523 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
86, 7oveq12d 6622 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝐶) = (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))
91, 5, 8cbvmpt 4709 . . . 4 (𝑥𝑋 ↦ (𝐴 · 𝐶)) = (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))
109oveq2i 6615 . . 3 (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶)))
1110a1i 11 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))))
12 dvmptmulf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
13 dvmptmulf.ph . . . . . 6 𝑥𝜑
14 nfv 1840 . . . . . 6 𝑥 𝑦𝑋
1513, 14nfan 1825 . . . . 5 𝑥(𝜑𝑦𝑋)
162nfel1 2775 . . . . 5 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
1715, 16nfim 1822 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)
18 eleq1 2686 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑋𝑦𝑋))
1918anbi2d 739 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝑋) ↔ (𝜑𝑦𝑋)))
206eleq1d 2683 . . . . 5 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2119, 20imbi12d 334 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)))
22 dvmptmulf.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2317, 21, 22chvar 2261 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)
24 nfcv 2761 . . . . . . 7 𝑥𝑦
2524nfcsb1 3529 . . . . . 6 𝑥𝑦 / 𝑥𝐵
26 nfcv 2761 . . . . . 6 𝑥𝑉
2725, 26nfel 2773 . . . . 5 𝑥𝑦 / 𝑥𝐵𝑉
2815, 27nfim 1822 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)
29 csbeq1a 3523 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
3029eleq1d 2683 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑉𝑦 / 𝑥𝐵𝑉))
3119, 30imbi12d 334 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐵𝑉) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)))
32 dvmptmulf.b . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑉)
3328, 31, 32chvar 2261 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)
34 nfcv 2761 . . . . . . 7 𝑦𝐴
35 csbeq1a 3523 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐴 = 𝑥 / 𝑦𝑦 / 𝑥𝐴)
36 csbco 3524 . . . . . . . . . 10 𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝑥 / 𝑥𝐴
37 csbid 3522 . . . . . . . . . 10 𝑥 / 𝑥𝐴 = 𝐴
3836, 37eqtri 2643 . . . . . . . . 9 𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝐴
3938a1i 11 . . . . . . . 8 (𝑦 = 𝑥𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝐴)
4035, 39eqtrd 2655 . . . . . . 7 (𝑦 = 𝑥𝑦 / 𝑥𝐴 = 𝐴)
412, 34, 40cbvmpt 4709 . . . . . 6 (𝑦𝑋𝑦 / 𝑥𝐴) = (𝑥𝑋𝐴)
4241oveq2i 6615 . . . . 5 (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑆 D (𝑥𝑋𝐴))
4342a1i 11 . . . 4 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑆 D (𝑥𝑋𝐴)))
44 dvmptmulf.ab . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
45 nfcv 2761 . . . . . 6 𝑦𝐵
4645, 25, 29cbvmpt 4709 . . . . 5 (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵)
4746a1i 11 . . . 4 (𝜑 → (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵))
4843, 44, 473eqtrd 2659 . . 3 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑦𝑋𝑦 / 𝑥𝐵))
494nfel1 2775 . . . . 5 𝑥𝑦 / 𝑥𝐶 ∈ ℂ
5015, 49nfim 1822 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)
517eleq1d 2683 . . . . 5 (𝑥 = 𝑦 → (𝐶 ∈ ℂ ↔ 𝑦 / 𝑥𝐶 ∈ ℂ))
5219, 51imbi12d 334 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)))
53 dvmptmulf.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
5450, 52, 53chvar 2261 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)
5524nfcsb1 3529 . . . . . 6 𝑥𝑦 / 𝑥𝐷
56 nfcv 2761 . . . . . 6 𝑥𝑊
5755, 56nfel 2773 . . . . 5 𝑥𝑦 / 𝑥𝐷𝑊
5815, 57nfim 1822 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)
59 csbeq1a 3523 . . . . . 6 (𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷)
6059eleq1d 2683 . . . . 5 (𝑥 = 𝑦 → (𝐷𝑊𝑦 / 𝑥𝐷𝑊))
6119, 60imbi12d 334 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐷𝑊) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)))
62 dvmptmulf.d . . . 4 ((𝜑𝑥𝑋) → 𝐷𝑊)
6358, 61, 62chvar 2261 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)
64 nfcv 2761 . . . . . . 7 𝑦𝐶
65 eqcom 2628 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
6665imbi1i 339 . . . . . . . . 9 ((𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶))
67 eqcom 2628 . . . . . . . . . 10 (𝐶 = 𝑦 / 𝑥𝐶𝑦 / 𝑥𝐶 = 𝐶)
6867imbi2i 326 . . . . . . . . 9 ((𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶))
6966, 68bitri 264 . . . . . . . 8 ((𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶))
707, 69mpbi 220 . . . . . . 7 (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶)
714, 64, 70cbvmpt 4709 . . . . . 6 (𝑦𝑋𝑦 / 𝑥𝐶) = (𝑥𝑋𝐶)
7271oveq2i 6615 . . . . 5 (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑆 D (𝑥𝑋𝐶))
7372a1i 11 . . . 4 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑆 D (𝑥𝑋𝐶)))
74 dvmptmulf.cd . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
75 nfcv 2761 . . . . . 6 𝑦𝐷
7675, 55, 59cbvmpt 4709 . . . . 5 (𝑥𝑋𝐷) = (𝑦𝑋𝑦 / 𝑥𝐷)
7776a1i 11 . . . 4 (𝜑 → (𝑥𝑋𝐷) = (𝑦𝑋𝑦 / 𝑥𝐷))
7873, 74, 773eqtrd 2659 . . 3 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑦𝑋𝑦 / 𝑥𝐷))
7912, 23, 33, 48, 54, 63, 78dvmptmul 23630 . 2 (𝜑 → (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))) = (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))))
8025, 3, 4nfov 6630 . . . . 5 𝑥(𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶)
81 nfcv 2761 . . . . 5 𝑥 +
8255, 3, 2nfov 6630 . . . . 5 𝑥(𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴)
8380, 81, 82nfov 6630 . . . 4 𝑥((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))
84 nfcv 2761 . . . 4 𝑦((𝐵 · 𝐶) + (𝐷 · 𝐴))
8565imbi1i 339 . . . . . . . 8 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
86 eqcom 2628 . . . . . . . . 9 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
8786imbi2i 326 . . . . . . . 8 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
8885, 87bitri 264 . . . . . . 7 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
8929, 88mpbi 220 . . . . . 6 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
9089, 70oveq12d 6622 . . . . 5 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) = (𝐵 · 𝐶))
9165imbi1i 339 . . . . . . . 8 ((𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝐷 = 𝑦 / 𝑥𝐷))
92 eqcom 2628 . . . . . . . . 9 (𝐷 = 𝑦 / 𝑥𝐷𝑦 / 𝑥𝐷 = 𝐷)
9392imbi2i 326 . . . . . . . 8 ((𝑦 = 𝑥𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷))
9491, 93bitri 264 . . . . . . 7 ((𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷))
9559, 94mpbi 220 . . . . . 6 (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷)
9695, 40oveq12d 6622 . . . . 5 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴) = (𝐷 · 𝐴))
9790, 96oveq12d 6622 . . . 4 (𝑦 = 𝑥 → ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴)) = ((𝐵 · 𝐶) + (𝐷 · 𝐴)))
9883, 84, 97cbvmpt 4709 . . 3 (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))
9998a1i 11 . 2 (𝜑 → (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
10011, 79, 993eqtrd 2659 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480  Ⅎwnf 1705   ∈ wcel 1987  ⦋csb 3514  {cpr 4150   ↦ cmpt 4673  (class class class)co 6604  ℂcc 9878  ℝcr 9879   + caddc 9883   · cmul 9885   D cdv 23533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537 This theorem is referenced by:  dvmptfprodlem  39465
 Copyright terms: Public domain W3C validator