MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptrecl Structured version   Visualization version   GIF version

Theorem dvmptrecl 23725
Description: Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvmptrecl.s (𝜑𝑆 ⊆ ℝ)
dvmptrecl.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvmptrecl.v ((𝜑𝑥𝑆) → 𝐵𝑉)
dvmptrecl.b (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
Assertion
Ref Expression
dvmptrecl ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem dvmptrecl
StepHypRef Expression
1 dvmptrecl.a . . . . . 6 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
2 eqid 2621 . . . . . 6 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
31, 2fmptd 6351 . . . . 5 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℝ)
4 dvmptrecl.s . . . . 5 (𝜑𝑆 ⊆ ℝ)
5 dvfre 23654 . . . . 5 (((𝑥𝑆𝐴):𝑆⟶ℝ ∧ 𝑆 ⊆ ℝ) → (ℝ D (𝑥𝑆𝐴)):dom (ℝ D (𝑥𝑆𝐴))⟶ℝ)
63, 4, 5syl2anc 692 . . . 4 (𝜑 → (ℝ D (𝑥𝑆𝐴)):dom (ℝ D (𝑥𝑆𝐴))⟶ℝ)
7 dvmptrecl.b . . . . 5 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
87dmeqd 5296 . . . . . 6 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = dom (𝑥𝑆𝐵))
9 dvmptrecl.v . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵𝑉)
109ralrimiva 2962 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐵𝑉)
11 dmmptg 5601 . . . . . . 7 (∀𝑥𝑆 𝐵𝑉 → dom (𝑥𝑆𝐵) = 𝑆)
1210, 11syl 17 . . . . . 6 (𝜑 → dom (𝑥𝑆𝐵) = 𝑆)
138, 12eqtrd 2655 . . . . 5 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = 𝑆)
147, 13feq12d 6000 . . . 4 (𝜑 → ((ℝ D (𝑥𝑆𝐴)):dom (ℝ D (𝑥𝑆𝐴))⟶ℝ ↔ (𝑥𝑆𝐵):𝑆⟶ℝ))
156, 14mpbid 222 . . 3 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℝ)
16 eqid 2621 . . . 4 (𝑥𝑆𝐵) = (𝑥𝑆𝐵)
1716fmpt 6347 . . 3 (∀𝑥𝑆 𝐵 ∈ ℝ ↔ (𝑥𝑆𝐵):𝑆⟶ℝ)
1815, 17sylibr 224 . 2 (𝜑 → ∀𝑥𝑆 𝐵 ∈ ℝ)
1918r19.21bi 2928 1 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2908  wss 3560  cmpt 4683  dom cdm 5084  wf 5853  (class class class)co 6615  cr 9895   D cdv 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-icc 12140  df-fz 12285  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-mulr 15895  df-starv 15896  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-rest 16023  df-topn 16024  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-cncf 22621  df-limc 23570  df-dv 23571
This theorem is referenced by:  dvfsumlem1  23727  dvfsumlem2  23728  dvfsumlem3  23729  dvfsumlem4  23730  dvfsumrlimge0  23731  dvfsumrlim  23732  dvfsumrlim2  23733  dvfsum2  23735
  Copyright terms: Public domain W3C validator