MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres3 Structured version   Visualization version   GIF version

Theorem dvmptres3 24552
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptres3.j 𝐽 = (TopOpen‘ℂfld)
dvmptres3.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptres3.x (𝜑𝑋𝐽)
dvmptres3.y (𝜑 → (𝑆𝑋) = 𝑌)
dvmptres3.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptres3.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptres3.d (𝜑 → (ℂ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptres3 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem dvmptres3
StepHypRef Expression
1 dvmptres3.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptres3.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
32fmpttd 6878 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
4 dvmptres3.x . . 3 (𝜑𝑋𝐽)
5 dvmptres3.d . . . . 5 (𝜑 → (ℂ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
65dmeqd 5773 . . . 4 (𝜑 → dom (ℂ D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
7 eqid 2821 . . . . 5 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
8 dvmptres3.b . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑉)
97, 8dmmptd 6492 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
106, 9eqtrd 2856 . . 3 (𝜑 → dom (ℂ D (𝑥𝑋𝐴)) = 𝑋)
11 dvmptres3.j . . . 4 𝐽 = (TopOpen‘ℂfld)
1211dvres3a 24511 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥𝑋𝐴):𝑋⟶ℂ) ∧ (𝑋𝐽 ∧ dom (ℂ D (𝑥𝑋𝐴)) = 𝑋)) → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
131, 3, 4, 10, 12syl22anc 836 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
14 rescom 5878 . . . . . 6 (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = (((𝑥𝑋𝐴) ↾ 𝑆) ↾ 𝑋)
15 resres 5865 . . . . . 6 (((𝑥𝑋𝐴) ↾ 𝑆) ↾ 𝑋) = ((𝑥𝑋𝐴) ↾ (𝑆𝑋))
1614, 15eqtri 2844 . . . . 5 (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ (𝑆𝑋))
17 dvmptres3.y . . . . . 6 (𝜑 → (𝑆𝑋) = 𝑌)
1817reseq2d 5852 . . . . 5 (𝜑 → ((𝑥𝑋𝐴) ↾ (𝑆𝑋)) = ((𝑥𝑋𝐴) ↾ 𝑌))
1916, 18syl5eq 2868 . . . 4 (𝜑 → (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ 𝑌))
20 ffn 6513 . . . . . 6 ((𝑥𝑋𝐴):𝑋⟶ℂ → (𝑥𝑋𝐴) Fn 𝑋)
21 fnresdm 6465 . . . . . 6 ((𝑥𝑋𝐴) Fn 𝑋 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
223, 20, 213syl 18 . . . . 5 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑋) = (𝑥𝑋𝐴))
2322reseq1d 5851 . . . 4 (𝜑 → (((𝑥𝑋𝐴) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐴) ↾ 𝑆))
24 inss2 4205 . . . . . 6 (𝑆𝑋) ⊆ 𝑋
2517, 24eqsstrrdi 4021 . . . . 5 (𝜑𝑌𝑋)
2625resmptd 5907 . . . 4 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑌) = (𝑥𝑌𝐴))
2719, 23, 263eqtr3d 2864 . . 3 (𝜑 → ((𝑥𝑋𝐴) ↾ 𝑆) = (𝑥𝑌𝐴))
2827oveq2d 7171 . 2 (𝜑 → (𝑆 D ((𝑥𝑋𝐴) ↾ 𝑆)) = (𝑆 D (𝑥𝑌𝐴)))
29 rescom 5878 . . . . 5 (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = (((𝑥𝑋𝐵) ↾ 𝑆) ↾ 𝑋)
30 resres 5865 . . . . 5 (((𝑥𝑋𝐵) ↾ 𝑆) ↾ 𝑋) = ((𝑥𝑋𝐵) ↾ (𝑆𝑋))
3129, 30eqtri 2844 . . . 4 (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐵) ↾ (𝑆𝑋))
3217reseq2d 5852 . . . 4 (𝜑 → ((𝑥𝑋𝐵) ↾ (𝑆𝑋)) = ((𝑥𝑋𝐵) ↾ 𝑌))
3331, 32syl5eq 2868 . . 3 (𝜑 → (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((𝑥𝑋𝐵) ↾ 𝑌))
348ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
357fnmpt 6487 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → (𝑥𝑋𝐵) Fn 𝑋)
36 fnresdm 6465 . . . . . 6 ((𝑥𝑋𝐵) Fn 𝑋 → ((𝑥𝑋𝐵) ↾ 𝑋) = (𝑥𝑋𝐵))
3734, 35, 363syl 18 . . . . 5 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑋) = (𝑥𝑋𝐵))
3837, 5eqtr4d 2859 . . . 4 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑋) = (ℂ D (𝑥𝑋𝐴)))
3938reseq1d 5851 . . 3 (𝜑 → (((𝑥𝑋𝐵) ↾ 𝑋) ↾ 𝑆) = ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆))
4025resmptd 5907 . . 3 (𝜑 → ((𝑥𝑋𝐵) ↾ 𝑌) = (𝑥𝑌𝐵))
4133, 39, 403eqtr3d 2864 . 2 (𝜑 → ((ℂ D (𝑥𝑋𝐴)) ↾ 𝑆) = (𝑥𝑌𝐵))
4213, 28, 413eqtr3d 2864 1 (𝜑 → (𝑆 D (𝑥𝑌𝐴)) = (𝑥𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  cin 3934  {cpr 4568  cmpt 5145  dom cdm 5554  cres 5556   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  TopOpenctopn 16694  fldccnfld 20544   D cdv 24460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fi 8874  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-icc 12744  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-starv 16579  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-rest 16695  df-topn 16696  df-topgen 16716  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cnp 21835  df-haus 21922  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-limc 24463  df-dv 24464
This theorem is referenced by:  dvmptid  24553  dvmptc  24554  taylthlem1  24960  taylthlem2  24961  pige3ALT  25104  dvcxp1  25320  dvreasin  34979  dvreacos  34980  areacirclem1  34981
  Copyright terms: Public domain W3C validator