MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulbr Structured version   Visualization version   GIF version

Theorem dvmulbr 24539
Description: The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmul 24541. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvadd.g (𝜑𝐺:𝑌⟶ℂ)
dvadd.y (𝜑𝑌𝑆)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.k (𝜑𝐾𝑉)
dvadd.l (𝜑𝐿𝑉)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvadd.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvmulbr (𝜑𝐶(𝑆 D (𝐹f · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))

Proof of Theorem dvmulbr
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . . . 6 (𝜑𝐶(𝑆 D 𝐹)𝐾)
2 eqid 2824 . . . . . . 7 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvadd.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
4 eqid 2824 . . . . . . 7 (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
6 dvadd.f . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
7 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldv 24499 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 234 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 497 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
11 dvadd.bg . . . . . 6 (𝜑𝐶(𝑆 D 𝐺)𝐿)
12 eqid 2824 . . . . . . 7 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
13 dvadd.g . . . . . . 7 (𝜑𝐺:𝑌⟶ℂ)
14 dvadd.y . . . . . . 7 (𝜑𝑌𝑆)
152, 3, 12, 5, 13, 14eldv 24499 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
1611, 15mpbid 234 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1716simpld 497 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌))
1810, 17elind 4174 . . 3 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
193cnfldtopon 23394 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
20 resttopon 21772 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
2119, 5, 20sylancr 589 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
22 topontop 21524 . . . . 5 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
2321, 22syl 17 . . . 4 (𝜑 → (𝐽t 𝑆) ∈ Top)
24 toponuni 21525 . . . . . 6 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
2521, 24syl 17 . . . . 5 (𝜑𝑆 = (𝐽t 𝑆))
267, 25sseqtrd 4010 . . . 4 (𝜑𝑋 (𝐽t 𝑆))
2714, 25sseqtrd 4010 . . . 4 (𝜑𝑌 (𝐽t 𝑆))
28 eqid 2824 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
2928ntrin 21672 . . . 4 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ 𝑌 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3023, 26, 27, 29syl3anc 1367 . . 3 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3118, 30eleqtrrd 2919 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)))
326adantr 483 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
33 inss1 4208 . . . . . . . . 9 (𝑋𝑌) ⊆ 𝑋
34 eldifi 4106 . . . . . . . . . 10 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧 ∈ (𝑋𝑌))
3534adantl 484 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋𝑌))
3633, 35sseldi 3968 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝑋)
3732, 36ffvelrnd 6855 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝑧) ∈ ℂ)
385, 6, 7dvbss 24502 . . . . . . . . . 10 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
39 reldv 24471 . . . . . . . . . . 11 Rel (𝑆 D 𝐹)
40 releldm 5817 . . . . . . . . . . 11 ((Rel (𝑆 D 𝐹) ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐶 ∈ dom (𝑆 D 𝐹))
4139, 1, 40sylancr 589 . . . . . . . . . 10 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
4238, 41sseldd 3971 . . . . . . . . 9 (𝜑𝐶𝑋)
436, 42ffvelrnd 6855 . . . . . . . 8 (𝜑 → (𝐹𝐶) ∈ ℂ)
4443adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
4537, 44subcld 11000 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
467, 5sstrd 3980 . . . . . . . . 9 (𝜑𝑋 ⊆ ℂ)
4746adantr 483 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑋 ⊆ ℂ)
4847, 36sseldd 3971 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ ℂ)
4946, 42sseldd 3971 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
5049adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ)
5148, 50subcld 11000 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
52 eldifsni 4725 . . . . . . . 8 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝐶)
5352adantl 484 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝐶)
5448, 50, 53subne0d 11009 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
5545, 51, 54divcld 11419 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
5613adantr 483 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐺:𝑌⟶ℂ)
57 inss2 4209 . . . . . . 7 (𝑋𝑌) ⊆ 𝑌
5857, 35sseldi 3968 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝑌)
5956, 58ffvelrnd 6855 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
6055, 59mulcld 10664 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) ∈ ℂ)
61 ssdif 4119 . . . . . . . 8 ((𝑋𝑌) ⊆ 𝑌 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
6257, 61mp1i 13 . . . . . . 7 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
6362sselda 3970 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑌 ∖ {𝐶}))
6414, 5sstrd 3980 . . . . . . 7 (𝜑𝑌 ⊆ ℂ)
655, 13, 14dvbss 24502 . . . . . . . 8 (𝜑 → dom (𝑆 D 𝐺) ⊆ 𝑌)
66 reldv 24471 . . . . . . . . 9 Rel (𝑆 D 𝐺)
67 releldm 5817 . . . . . . . . 9 ((Rel (𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺))
6866, 11, 67sylancr 589 . . . . . . . 8 (𝜑𝐶 ∈ dom (𝑆 D 𝐺))
6965, 68sseldd 3971 . . . . . . 7 (𝜑𝐶𝑌)
7013, 64, 69dvlem 24497 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
7163, 70syldan 593 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
7271, 44mulcld 10664 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)) ∈ ℂ)
73 ssidd 3993 . . . 4 (𝜑 → ℂ ⊆ ℂ)
74 txtopon 22202 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
7519, 19, 74mp2an 690 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
7675toponrestid 21532 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
779simprd 498 . . . . . 6 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
786, 46, 42dvlem 24497 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
7978fmpttd 6882 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
80 ssdif 4119 . . . . . . . . 9 ((𝑋𝑌) ⊆ 𝑋 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
8133, 80mp1i 13 . . . . . . . 8 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
8246ssdifssd 4122 . . . . . . . 8 (𝜑 → (𝑋 ∖ {𝐶}) ⊆ ℂ)
83 eqid 2824 . . . . . . . 8 (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))
8433, 7sstrid 3981 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋𝑌) ⊆ 𝑆)
8584, 25sseqtrd 4010 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝑌) ⊆ (𝐽t 𝑆))
86 difssd 4112 . . . . . . . . . . . . . 14 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑋) ⊆ (𝐽t 𝑆))
8785, 86unssd 4165 . . . . . . . . . . . . 13 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆))
88 ssun1 4151 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))
8988a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)))
9028ntrss 21666 . . . . . . . . . . . . 13 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9123, 87, 89, 90syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9291, 31sseldd 3971 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
9392, 42elind 4174 . . . . . . . . . 10 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
9433a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ 𝑋)
95 eqid 2824 . . . . . . . . . . . . 13 ((𝐽t 𝑆) ↾t 𝑋) = ((𝐽t 𝑆) ↾t 𝑋)
9628, 95restntr 21793 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑋) → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
9723, 26, 94, 96syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
983cnfldtop 23395 . . . . . . . . . . . . . . 15 𝐽 ∈ Top
9998a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
100 cnex 10621 . . . . . . . . . . . . . . 15 ℂ ∈ V
101 ssexg 5230 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
1025, 100, 101sylancl 588 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
103 restabs 21776 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑋𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
10499, 7, 102, 103syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
105104fveq2d 6677 . . . . . . . . . . . 12 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑋)) = (int‘(𝐽t 𝑋)))
106105fveq1d 6675 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
10797, 106eqtr3d 2861 . . . . . . . . . 10 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
10893, 107eleqtrd 2918 . . . . . . . . 9 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
109 undif1 4427 . . . . . . . . . . . . 13 ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∪ {𝐶})
11042snssd 4745 . . . . . . . . . . . . . 14 (𝜑 → {𝐶} ⊆ 𝑋)
111 ssequn2 4162 . . . . . . . . . . . . . 14 ({𝐶} ⊆ 𝑋 ↔ (𝑋 ∪ {𝐶}) = 𝑋)
112110, 111sylib 220 . . . . . . . . . . . . 13 (𝜑 → (𝑋 ∪ {𝐶}) = 𝑋)
113109, 112syl5eq 2871 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = 𝑋)
114113oveq2d 7175 . . . . . . . . . . 11 (𝜑 → (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑋))
115114fveq2d 6677 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑋)))
116 undif1 4427 . . . . . . . . . . 11 (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = ((𝑋𝑌) ∪ {𝐶})
11742, 69elind 4174 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (𝑋𝑌))
118117snssd 4745 . . . . . . . . . . . 12 (𝜑 → {𝐶} ⊆ (𝑋𝑌))
119 ssequn2 4162 . . . . . . . . . . . 12 ({𝐶} ⊆ (𝑋𝑌) ↔ ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
120118, 119sylib 220 . . . . . . . . . . 11 (𝜑 → ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
121116, 120syl5eq 2871 . . . . . . . . . 10 (𝜑 → (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = (𝑋𝑌))
122115, 121fveq12d 6680 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
123108, 122eleqtrrd 2919 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
12479, 81, 82, 3, 83, 123limcres 24487 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
12581resmptd 5911 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))))
126125oveq1d 7174 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
127124, 126eqtr3d 2861 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
12877, 127eleqtrd 2918 . . . . 5 (𝜑𝐾 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
129 eqid 2824 . . . . . . . . . 10 (𝐽t 𝑌) = (𝐽t 𝑌)
130129, 3dvcnp2 24520 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
1315, 13, 14, 68, 130syl31anc 1369 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
1323, 129cnplimc 24488 . . . . . . . . 9 ((𝑌 ⊆ ℂ ∧ 𝐶𝑌) → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
13364, 69, 132syl2anc 586 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
134131, 133mpbid 234 . . . . . . 7 (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
135134simprd 498 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
136 difss 4111 . . . . . . . . . 10 ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋𝑌)
137136, 57sstri 3979 . . . . . . . . 9 ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑌
138137a1i 11 . . . . . . . 8 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑌)
139 eqid 2824 . . . . . . . 8 (𝐽t (𝑌 ∪ {𝐶})) = (𝐽t (𝑌 ∪ {𝐶}))
140 difssd 4112 . . . . . . . . . . . . . 14 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑌) ⊆ (𝐽t 𝑆))
14185, 140unssd 4165 . . . . . . . . . . . . 13 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆))
142 ssun1 4151 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))
143142a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)))
14428ntrss 21666 . . . . . . . . . . . . 13 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
14523, 141, 143, 144syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
146145, 31sseldd 3971 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
147146, 69elind 4174 . . . . . . . . . 10 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
14857a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ 𝑌)
149 eqid 2824 . . . . . . . . . . . . 13 ((𝐽t 𝑆) ↾t 𝑌) = ((𝐽t 𝑆) ↾t 𝑌)
15028, 149restntr 21793 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ 𝑌 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑌) → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
15123, 27, 148, 150syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
152 restabs 21776 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑌𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
15399, 14, 102, 152syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
154153fveq2d 6677 . . . . . . . . . . . 12 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑌)) = (int‘(𝐽t 𝑌)))
155154fveq1d 6675 . . . . . . . . . . 11 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
156151, 155eqtr3d 2861 . . . . . . . . . 10 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
157147, 156eleqtrd 2918 . . . . . . . . 9 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
15869snssd 4745 . . . . . . . . . . . . 13 (𝜑 → {𝐶} ⊆ 𝑌)
159 ssequn2 4162 . . . . . . . . . . . . 13 ({𝐶} ⊆ 𝑌 ↔ (𝑌 ∪ {𝐶}) = 𝑌)
160158, 159sylib 220 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∪ {𝐶}) = 𝑌)
161160oveq2d 7175 . . . . . . . . . . 11 (𝜑 → (𝐽t (𝑌 ∪ {𝐶})) = (𝐽t 𝑌))
162161fveq2d 6677 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t (𝑌 ∪ {𝐶}))) = (int‘(𝐽t 𝑌)))
163162, 121fveq12d 6680 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t (𝑌 ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
164157, 163eleqtrrd 2919 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t (𝑌 ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
16513, 138, 64, 3, 139, 164limcres 24487 . . . . . . 7 (𝜑 → ((𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = (𝐺 lim 𝐶))
16613, 138feqresmpt 6737 . . . . . . . 8 (𝜑 → (𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)))
167166oveq1d 7174 . . . . . . 7 (𝜑 → ((𝐺 ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
168165, 167eqtr3d 2861 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
169135, 168eleqtrd 2918 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
1703mulcn 23478 . . . . . 6 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1715, 6, 7dvcl 24500 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1721, 171mpdan 685 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
17313, 69ffvelrnd 6855 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ ℂ)
174172, 173opelxpd 5596 . . . . . 6 (𝜑 → ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ))
17575toponunii 21527 . . . . . . 7 (ℂ × ℂ) = (𝐽 ×t 𝐽)
176175cncnpi 21889 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, (𝐺𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
177170, 174, 176sylancr 589 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, (𝐺𝐶)⟩))
17855, 59, 73, 73, 3, 76, 128, 169, 177limccnp2 24493 . . . 4 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧))) lim 𝐶))
17916simprd 498 . . . . . 6 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
18070fmpttd 6882 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))):(𝑌 ∖ {𝐶})⟶ℂ)
18164ssdifssd 4122 . . . . . . . 8 (𝜑 → (𝑌 ∖ {𝐶}) ⊆ ℂ)
182 eqid 2824 . . . . . . . 8 (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))
183 undif1 4427 . . . . . . . . . . . . 13 ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = (𝑌 ∪ {𝐶})
184183, 160syl5eq 2871 . . . . . . . . . . . 12 (𝜑 → ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = 𝑌)
185184oveq2d 7175 . . . . . . . . . . 11 (𝜑 → (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑌))
186185fveq2d 6677 . . . . . . . . . 10 (𝜑 → (int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑌)))
187186, 121fveq12d 6680 . . . . . . . . 9 (𝜑 → ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
188157, 187eleqtrrd 2919 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
189180, 62, 181, 3, 182, 188limcres 24487 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
19062resmptd 5911 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
191190oveq1d 7174 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
192189, 191eqtr3d 2861 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
193179, 192eleqtrd 2918 . . . . 5 (𝜑𝐿 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
19484, 5sstrd 3980 . . . . . . . 8 (𝜑 → (𝑋𝑌) ⊆ ℂ)
195 cncfmptc 23522 . . . . . . . 8 (((𝐹𝐶) ∈ ℂ ∧ (𝑋𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ∈ ((𝑋𝑌)–cn→ℂ))
19643, 194, 73, 195syl3anc 1367 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ∈ ((𝑋𝑌)–cn→ℂ))
197 eqidd 2825 . . . . . . 7 (𝑧 = 𝐶 → (𝐹𝐶) = (𝐹𝐶))
198196, 117, 197cnmptlimc 24491 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶))
19943adantr 483 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑋𝑌)) → (𝐹𝐶) ∈ ℂ)
200199fmpttd 6882 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)):(𝑋𝑌)⟶ℂ)
201200limcdif 24477 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶) = (((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶))
202 resmpt 5908 . . . . . . . . 9 (((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋𝑌) → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)))
203136, 202mp1i 13 . . . . . . . 8 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)))
204203oveq1d 7174 . . . . . . 7 (𝜑 → (((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
205201, 204eqtrd 2859 . . . . . 6 (𝜑 → ((𝑧 ∈ (𝑋𝑌) ↦ (𝐹𝐶)) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
206198, 205eleqtrd 2918 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (𝐹𝐶)) lim 𝐶))
2075, 13, 14dvcl 24500 . . . . . . . 8 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
20811, 207mpdan 685 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
209208, 43opelxpd 5596 . . . . . 6 (𝜑 → ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ))
210175cncnpi 21889 . . . . . 6 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐿, (𝐹𝐶)⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
211170, 209, 210sylancr 589 . . . . 5 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐿, (𝐹𝐶)⟩))
21271, 44, 73, 73, 3, 76, 193, 206, 211limccnp2 24493 . . . 4 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))) lim 𝐶))
2133addcn 23476 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
214172, 173mulcld 10664 . . . . . 6 (𝜑 → (𝐾 · (𝐺𝐶)) ∈ ℂ)
215208, 43mulcld 10664 . . . . . 6 (𝜑 → (𝐿 · (𝐹𝐶)) ∈ ℂ)
216214, 215opelxpd 5596 . . . . 5 (𝜑 → ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ))
217175cncnpi 21889 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
218213, 216, 217sylancr 589 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨(𝐾 · (𝐺𝐶)), (𝐿 · (𝐹𝐶))⟩))
21960, 72, 73, 73, 3, 76, 178, 212, 218limccnp2 24493 . . 3 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
22042adantr 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶𝑋)
22132, 220ffvelrnd 6855 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
22237, 221subcld 11000 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
223222, 59mulcld 10664 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) ∈ ℂ)
22469adantr 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶𝑌)
22556, 224ffvelrnd 6855 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
22659, 225subcld 11000 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
227226, 221mulcld 10664 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) ∈ ℂ)
22847, 220sseldd 3971 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ)
22948, 228subcld 11000 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
230223, 227, 229, 54divdird 11457 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))))
23137, 59mulcld 10664 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
232221, 59mulcld 10664 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · (𝐺𝑧)) ∈ ℂ)
233221, 225mulcld 10664 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · (𝐺𝐶)) ∈ ℂ)
234231, 232, 233npncand 11024 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
23537, 221, 59subdird 11100 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))))
236226, 221mulcomd 10665 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))))
237221, 59, 225subdid 11099 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝐶) · ((𝐺𝑧) − (𝐺𝐶))) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
238236, 237eqtrd 2859 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) = (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
239235, 238oveq12d 7177 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = ((((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝑧))) + (((𝐹𝐶) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶)))))
2406ffnd 6518 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
241240adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐹 Fn 𝑋)
24213ffnd 6518 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑌)
243242adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐺 Fn 𝑌)
244 ssexg 5230 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
24546, 100, 244sylancl 588 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
246245adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑋 ∈ V)
247 ssexg 5230 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℂ ∧ ℂ ∈ V) → 𝑌 ∈ V)
24864, 100, 247sylancl 588 . . . . . . . . . . . 12 (𝜑𝑌 ∈ V)
249248adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑌 ∈ V)
250 eqid 2824 . . . . . . . . . . 11 (𝑋𝑌) = (𝑋𝑌)
251 eqidd 2825 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
252 eqidd 2825 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑌) → (𝐺𝑧) = (𝐺𝑧))
253241, 243, 246, 249, 250, 251, 252ofval 7421 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ (𝑋𝑌)) → ((𝐹f · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
25435, 253mpdan 685 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹f · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
255 eqidd 2825 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
256 eqidd 2825 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑌) → (𝐺𝐶) = (𝐺𝐶))
257241, 243, 246, 249, 250, 255, 256ofval 7421 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ (𝑋𝑌)) → ((𝐹f · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
258117, 257mpidan 687 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹f · 𝐺)‘𝐶) = ((𝐹𝐶) · (𝐺𝐶)))
259254, 258oveq12d 7177 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) = (((𝐹𝑧) · (𝐺𝑧)) − ((𝐹𝐶) · (𝐺𝐶))))
260234, 239, 2593eqtr4d 2869 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) = (((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)))
261260oveq1d 7174 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) + (((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶))) / (𝑧𝐶)) = ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶)))
262222, 59, 229, 54div23d 11456 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)))
263226, 221, 229, 54div23d 11456 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶)) = ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))
264262, 263oveq12d 7177 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((((𝐹𝑧) − (𝐹𝐶)) · (𝐺𝑧)) / (𝑧𝐶)) + ((((𝐺𝑧) − (𝐺𝐶)) · (𝐹𝐶)) / (𝑧𝐶))) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
265230, 261, 2643eqtr3d 2867 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶)) = (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶))))
266265mpteq2dva 5164 . . . 4 (𝜑 → (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))))
267266oveq1d 7174 . . 3 (𝜑 → ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) · (𝐺𝑧)) + ((((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) · (𝐹𝐶)))) lim 𝐶))
268219, 267eleqtrrd 2919 . 2 (𝜑 → ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
269 eqid 2824 . . 3 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶)))
270 mulcl 10624 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
271270adantl 484 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
272271, 6, 13, 245, 248, 250off 7427 . . 3 (𝜑 → (𝐹f · 𝐺):(𝑋𝑌)⟶ℂ)
2732, 3, 269, 5, 272, 84eldv 24499 . 2 (𝜑 → (𝐶(𝑆 D (𝐹f · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ∧ ((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f · 𝐺)‘𝑧) − ((𝐹f · 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
27431, 268, 273mpbir2and 711 1 (𝜑𝐶(𝑆 D (𝐹f · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  cdif 3936  cun 3937  cin 3938  wss 3939  {csn 4570  cop 4576   cuni 4841   class class class wbr 5069  cmpt 5149   × cxp 5556  dom cdm 5558  cres 5560  Rel wrel 5563   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410  cc 10538   + caddc 10543   · cmul 10545  cmin 10873   / cdiv 11300  t crest 16697  TopOpenctopn 16698  fldccnfld 20548  Topctop 21504  TopOnctopon 21521  intcnt 21628   Cn ccn 21835   CnP ccnp 21836   ×t ctx 22171  cnccncf 23487   lim climc 24463   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-cn 21838  df-cnp 21839  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvmul  24541  dvmulf  24543  dvef  24580
  Copyright terms: Public domain W3C validator