MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnadd Structured version   Visualization version   GIF version

Theorem dvnadd 23412
Description: The 𝑁-th derivative of the 𝑀-th derivative of 𝐹 is the same as the 𝑀 + 𝑁-th derivative of 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnadd (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))

Proof of Theorem dvnadd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6085 . . . . . 6 (𝑛 = 0 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0))
2 oveq2 6532 . . . . . . 7 (𝑛 = 0 → (𝑀 + 𝑛) = (𝑀 + 0))
32fveq2d 6089 . . . . . 6 (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))
41, 3eqeq12d 2621 . . . . 5 (𝑛 = 0 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0))))
54imbi2d 328 . . . 4 (𝑛 = 0 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))))
6 fveq2 6085 . . . . . 6 (𝑛 = 𝑘 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘))
7 oveq2 6532 . . . . . . 7 (𝑛 = 𝑘 → (𝑀 + 𝑛) = (𝑀 + 𝑘))
87fveq2d 6089 . . . . . 6 (𝑛 = 𝑘 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))
96, 8eqeq12d 2621 . . . . 5 (𝑛 = 𝑘 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
109imbi2d 328 . . . 4 (𝑛 = 𝑘 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))))
11 fveq2 6085 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)))
12 oveq2 6532 . . . . . . 7 (𝑛 = (𝑘 + 1) → (𝑀 + 𝑛) = (𝑀 + (𝑘 + 1)))
1312fveq2d 6089 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))
1411, 13eqeq12d 2621 . . . . 5 (𝑛 = (𝑘 + 1) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1)))))
1514imbi2d 328 . . . 4 (𝑛 = (𝑘 + 1) → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
16 fveq2 6085 . . . . . 6 (𝑛 = 𝑁 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁))
17 oveq2 6532 . . . . . . 7 (𝑛 = 𝑁 → (𝑀 + 𝑛) = (𝑀 + 𝑁))
1817fveq2d 6089 . . . . . 6 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))
1916, 18eqeq12d 2621 . . . . 5 (𝑛 = 𝑁 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
2019imbi2d 328 . . . 4 (𝑛 = 𝑁 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))))
21 recnprss 23388 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
2221ad2antrr 757 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → 𝑆 ⊆ ℂ)
23 ssid 3583 . . . . . . . . . 10 ℂ ⊆ ℂ
2423a1i 11 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ℂ ⊆ ℂ)
25 cnex 9870 . . . . . . . . . . 11 ℂ ∈ V
26 elpm2g 7734 . . . . . . . . . . 11 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2725, 26mpan 701 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2827simplbda 651 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
2925a1i 11 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ℂ ∈ V)
30 simpl 471 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ {ℝ, ℂ})
31 pmss12g 7744 . . . . . . . . 9 (((ℂ ⊆ ℂ ∧ dom 𝐹𝑆) ∧ (ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ})) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
3224, 28, 29, 30, 31syl22anc 1318 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
3332adantr 479 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
34 dvnff 23406 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))
3534ffvelrnda 6249 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm dom 𝐹))
3633, 35sseldd 3565 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
37 dvn0 23407 . . . . . 6 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘𝑀))
3822, 36, 37syl2anc 690 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘𝑀))
39 nn0cn 11146 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
4039adantl 480 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
4140addid1d 10084 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
4241fveq2d 6089 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)) = ((𝑆 D𝑛 𝐹)‘𝑀))
4338, 42eqtr4d 2643 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))
44 oveq2 6532 . . . . . . 7 (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
4522adantr 479 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆ ℂ)
4636adantr 479 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
47 simpr 475 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
48 dvnp1 23408 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)))
4945, 46, 47, 48syl3anc 1317 . . . . . . . 8 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)))
5040adantr 479 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℂ)
51 nn0cn 11146 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
5251adantl 480 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
53 1cnd 9909 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
5450, 52, 53addassd 9915 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
5554fveq2d 6089 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))
56 simpllr 794 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm 𝑆))
57 nn0addcl 11172 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
5857adantll 745 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
59 dvnp1 23408 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑀 + 𝑘) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6045, 56, 58, 59syl3anc 1317 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6155, 60eqtr3d 2642 . . . . . . . 8 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6249, 61eqeq12d 2621 . . . . . . 7 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))) ↔ (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))))
6344, 62syl5ibr 234 . . . . . 6 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1)))))
6463expcom 449 . . . . 5 (𝑘 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
6564a2d 29 . . . 4 (𝑘 ∈ ℕ0 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
665, 10, 15, 20, 43, 65nn0ind 11301 . . 3 (𝑁 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
6766com12 32 . 2 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
6867impr 646 1 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  Vcvv 3169  wss 3536  {cpr 4123  dom cdm 5025  wf 5783  cfv 5787  (class class class)co 6524  pm cpm 7719  cc 9787  cr 9788  0cc0 9789  1c1 9790   + caddc 9792  0cn0 11136   D cdv 23347   D𝑛 cdvn 23348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-pm 7721  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fi 8174  df-sup 8205  df-inf 8206  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xneg 11775  df-xadd 11776  df-xmul 11777  df-icc 12006  df-fz 12150  df-seq 12616  df-exp 12675  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-plusg 15724  df-mulr 15725  df-starv 15726  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-rest 15849  df-topn 15850  df-topgen 15870  df-psmet 19502  df-xmet 19503  df-met 19504  df-bl 19505  df-mopn 19506  df-fbas 19507  df-fg 19508  df-cnfld 19511  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-cld 20572  df-ntr 20573  df-cls 20574  df-nei 20651  df-lp 20689  df-perf 20690  df-cnp 20781  df-haus 20868  df-fil 21399  df-fm 21491  df-flim 21492  df-flf 21493  df-xms 21873  df-ms 21874  df-limc 23350  df-dv 23351  df-dvn 23352
This theorem is referenced by:  dvn2bss  23413  dvtaylp  23842  dvntaylp  23843  dvntaylp0  23844
  Copyright terms: Public domain W3C validator