MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnadd Structured version   Visualization version   GIF version

Theorem dvnadd 23737
Description: The 𝑁-th derivative of the 𝑀-th derivative of 𝐹 is the same as the 𝑀 + 𝑁-th derivative of 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnadd (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))

Proof of Theorem dvnadd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . . . 6 (𝑛 = 0 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0))
2 oveq2 6698 . . . . . . 7 (𝑛 = 0 → (𝑀 + 𝑛) = (𝑀 + 0))
32fveq2d 6233 . . . . . 6 (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))
41, 3eqeq12d 2666 . . . . 5 (𝑛 = 0 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0))))
54imbi2d 329 . . . 4 (𝑛 = 0 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))))
6 fveq2 6229 . . . . . 6 (𝑛 = 𝑘 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘))
7 oveq2 6698 . . . . . . 7 (𝑛 = 𝑘 → (𝑀 + 𝑛) = (𝑀 + 𝑘))
87fveq2d 6233 . . . . . 6 (𝑛 = 𝑘 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))
96, 8eqeq12d 2666 . . . . 5 (𝑛 = 𝑘 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
109imbi2d 329 . . . 4 (𝑛 = 𝑘 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))))
11 fveq2 6229 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)))
12 oveq2 6698 . . . . . . 7 (𝑛 = (𝑘 + 1) → (𝑀 + 𝑛) = (𝑀 + (𝑘 + 1)))
1312fveq2d 6233 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))
1411, 13eqeq12d 2666 . . . . 5 (𝑛 = (𝑘 + 1) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1)))))
1514imbi2d 329 . . . 4 (𝑛 = (𝑘 + 1) → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
16 fveq2 6229 . . . . . 6 (𝑛 = 𝑁 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁))
17 oveq2 6698 . . . . . . 7 (𝑛 = 𝑁 → (𝑀 + 𝑛) = (𝑀 + 𝑁))
1817fveq2d 6233 . . . . . 6 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))
1916, 18eqeq12d 2666 . . . . 5 (𝑛 = 𝑁 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
2019imbi2d 329 . . . 4 (𝑛 = 𝑁 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))))
21 recnprss 23713 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
2221ad2antrr 762 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → 𝑆 ⊆ ℂ)
23 ssid 3657 . . . . . . . . . 10 ℂ ⊆ ℂ
2423a1i 11 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ℂ ⊆ ℂ)
25 cnex 10055 . . . . . . . . . . 11 ℂ ∈ V
26 elpm2g 7916 . . . . . . . . . . 11 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2725, 26mpan 706 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2827simplbda 653 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
2925a1i 11 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ℂ ∈ V)
30 simpl 472 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ {ℝ, ℂ})
31 pmss12g 7926 . . . . . . . . 9 (((ℂ ⊆ ℂ ∧ dom 𝐹𝑆) ∧ (ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ})) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
3224, 28, 29, 30, 31syl22anc 1367 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
3332adantr 480 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
34 dvnff 23731 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))
3534ffvelrnda 6399 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm dom 𝐹))
3633, 35sseldd 3637 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
37 dvn0 23732 . . . . . 6 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘𝑀))
3822, 36, 37syl2anc 694 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘𝑀))
39 nn0cn 11340 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
4039adantl 481 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
4140addid1d 10274 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
4241fveq2d 6233 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)) = ((𝑆 D𝑛 𝐹)‘𝑀))
4338, 42eqtr4d 2688 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))
44 oveq2 6698 . . . . . . 7 (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
4522adantr 480 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆ ℂ)
4636adantr 480 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
47 simpr 476 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
48 dvnp1 23733 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)))
4945, 46, 47, 48syl3anc 1366 . . . . . . . 8 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)))
5040adantr 480 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℂ)
51 nn0cn 11340 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
5251adantl 481 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
53 1cnd 10094 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
5450, 52, 53addassd 10100 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
5554fveq2d 6233 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))
56 simpllr 815 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm 𝑆))
57 nn0addcl 11366 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
5857adantll 750 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
59 dvnp1 23733 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑀 + 𝑘) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6045, 56, 58, 59syl3anc 1366 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6155, 60eqtr3d 2687 . . . . . . . 8 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6249, 61eqeq12d 2666 . . . . . . 7 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))) ↔ (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))))
6344, 62syl5ibr 236 . . . . . 6 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1)))))
6463expcom 450 . . . . 5 (𝑘 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
6564a2d 29 . . . 4 (𝑘 ∈ ℕ0 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
665, 10, 15, 20, 43, 65nn0ind 11510 . . 3 (𝑁 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
6766com12 32 . 2 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
6867impr 648 1 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607  {cpr 4212  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  pm cpm 7900  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  0cn0 11330   D cdv 23672   D𝑛 cdvn 23673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cnp 21080  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-limc 23675  df-dv 23676  df-dvn 23677
This theorem is referenced by:  dvn2bss  23738  dvtaylp  24169  dvntaylp  24170  dvntaylp0  24171
  Copyright terms: Public domain W3C validator