MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfval Structured version   Visualization version   GIF version

Theorem dvnfval 24518
Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
dvnfval.1 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
Assertion
Ref Expression
dvnfval ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dvnfval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvn 24465 . . 3 D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})))
21a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓}))))
3 simprl 769 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑠 = 𝑆)
43oveq1d 7170 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑠 D 𝑥) = (𝑆 D 𝑥))
54mpteq2dv 5161 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥)))
6 dvnfval.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
75, 6syl6eqr 2874 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = 𝐺)
87coeq1d 5731 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ) = (𝐺 ∘ 1st ))
98seqeq2d 13375 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})))
10 simprr 771 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110sneqd 4578 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → {𝑓} = {𝐹})
1211xpeq2d 5584 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 × {𝑓}) = (ℕ0 × {𝐹}))
1312seqeq3d 13376 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
149, 13eqtrd 2856 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
15 simpr 487 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
1615oveq2d 7171 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
17 simpl 485 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
18 cnex 10617 . . . 4 ℂ ∈ V
1918elpw2 5247 . . 3 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
2017, 19sylibr 236 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
21 simpr 487 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
22 seqex 13370 . . 3 seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V
2322a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V)
242, 14, 16, 20, 21, 23ovmpodx 7300 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  𝒫 cpw 4538  {csn 4566  cmpt 5145   × cxp 5552  ccom 5558  (class class class)co 7155  cmpo 7157  1st c1st 7686  pm cpm 8406  cc 10534  0cc0 10536  0cn0 11896  seqcseq 13368   D cdv 24460   D𝑛 cdvn 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-seq 13369  df-dvn 24465
This theorem is referenced by:  dvnff  24519  dvn0  24520  dvnp1  24521
  Copyright terms: Public domain W3C validator